1,138
Views
91
CrossRef citations to date
0
Altmetric
Research Paper

Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion

, , , , &
Pages 940-949 | Published online: 18 Jul 2012
 

Abstract

The epigenetic regulation of genes has long been recognized as one of the causes of prostate cancer (PCa) development and progression. Recent studies have shown that a number of microRNAs (miRNAs) are also epigenetically regulated in different types of cancers including PCa. In this study, we found that the DNA sequence of the promoters of miR-29a and miR-1256 are partly methylated in PCa cells, which leads to their lower expression both in PCa cells and in human tumor tissues compared with normal epithelial cells and normal human prostate tissues. By real-time PCR, Western Blot analysis and miRNA mimic and 3′-UTR-Luc transfection, we found that TRIM68 is a direct target of miR-29a and miR-1256 and that the downregulation of miR-29a and miR-1256 in PCa cells leads to increased expression of TRIM68 and PGK-1 in PCa cells and in human tumor tissue specimens. Interestingly, we found that a natural agent, isoflavone, could demethylate the methylation sites in the promoter sequence of miR-29a and miR-1256, leading to the upregulation of miR-29a and miR-1256 expression. The increased levels of miR-29a and miR-1256 by isoflavone treatment resulted in decreased expression of TRIM68 and PGK-1, which is mechanistically linked with inhibition of PCa cell growth and invasion. The selective demethylation activity of isoflavone on miR-29a and miR-1256 leading to the suppression of TRIM68 and PGK-1 expression is an important biological effect of isoflavone, suggesting that isoflavone could be a useful non-toxic demethylating agent for the prevention of PCa development and progression.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

Support was provided by National Cancer Institute, NIH (5R01CA083695 and 5R01CA108535 to FHS). We also thank Guido and Puschelberg Foundation for their generous contribution for the completion of this study.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.