1,138
Views
91
CrossRef citations to date
0
Altmetric
Research Paper

Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion

, , , , &
Pages 940-949 | Published online: 18 Jul 2012

References

  • Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin 2012; 62:10 - 29; http://dx.doi.org/10.3322/caac.20138; PMID: 22237781
  • Jerónimo C, Bastian PJ, Bjartell A, Carbone GM, Catto JW, Clark SJ, et al. Epigenetics in prostate cancer: biologic and clinical relevance. Eur Urol 2011; 60:753 - 66; http://dx.doi.org/10.1016/j.eururo.2011.06.035; PMID: 21719191
  • Formosa A, Lena AM, Markert EK, Cortelli S, Miano R, Mauriello A, et al. DNA methylation silences miR-132 in prostate cancer. Oncogene 2012; http://dx.doi.org/10.1038/onc.2012.14; PMID: 22310291
  • Agirre X, Martínez-Climent JA, Odero MD, Prósper F. Epigenetic regulation of miRNA genes in acute leukemia. Leukemia 2012; 26:395 - 403; http://dx.doi.org/10.1038/leu.2011.344; PMID: 22143672
  • Lopez-Serra P, Esteller M. DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene 2012; 31:1609 - 22; http://dx.doi.org/10.1038/onc.2011.354; PMID: 21860412
  • Wu WK, Law PT, Lee CW, Cho CH, Fan D, Wu K, et al. MicroRNA in colorectal cancer: from benchtop to bedside. Carcinogenesis 2011; 32:247 - 53; http://dx.doi.org/10.1093/carcin/bgq243; PMID: 21081475
  • Li Y, Kong D, Wang Z, Sarkar FH. Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res 2010; 27:1027 - 41; http://dx.doi.org/10.1007/s11095-010-0105-y; PMID: 20306121
  • Kasinski AL, Slack FJ. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 2011; 11:849 - 64; http://dx.doi.org/10.1038/nrc3166; PMID: 22113163
  • Huang J, Plass C, Gerhauser C. Cancer chemoprevention by targeting the epigenome. Curr Drug Targets 2011; 12:1925 - 56; http://dx.doi.org/10.2174/138945011798184155; PMID: 21158707
  • Rabiau N, Trraf HK, Adjakly M, Bosviel R, Guy L, Fontana L, et al. miRNAs differentially expressed in prostate cancer cell lines after soy treatment. In Vivo 2011; 25:917 - 21; PMID: 22021684
  • Li Y, VandenBoom TG 2nd, Kong D, Wang Z, Ali S, Philip PA, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 2009; 69:6704 - 12; http://dx.doi.org/10.1158/0008-5472.CAN-09-1298; PMID: 19654291
  • Li Y, Vandenboom TG 2nd, Wang Z, Kong D, Ali S, Philip PA, et al. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res 2010; 70:1486 - 95; http://dx.doi.org/10.1158/0008-5472.CAN-09-2792; PMID: 20124483
  • Desjobert C, Renalier MH, Bergalet J, Dejean E, Joseph N, Kruczynski A, et al. MiR-29a down-regulation in ALK-positive anaplastic large cell lymphomas contributes to apoptosis blockade through MCL-1 overexpression. Blood 2011; 117:6627 - 37; http://dx.doi.org/10.1182/blood-2010-09-301994; PMID: 21471522
  • Lee KH, Lotterman C, Karikari C, Omura N, Feldmann G, Habbe N, et al. Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 2009; 9:293 - 301; http://dx.doi.org/10.1159/000186051; PMID: 19407485
  • Cui Y, Su WY, Xing J, Wang YC, Wang P, Chen XY, et al. MiR-29a inhibits cell proliferation and induces cell cycle arrest through the downregulation of p42.3 in human gastric cancer. PLoS One 2011; 6:e25872; http://dx.doi.org/10.1371/journal.pone.0025872; PMID: 21998710
  • Zhao JJ, Lin J, Lwin T, Yang H, Guo J, Kong W, et al. microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 2010; 115:2630 - 9; http://dx.doi.org/10.1182/blood-2009-09-243147; PMID: 20086245
  • Muniyappa MK, Dowling P, Henry M, Meleady P, Doolan P, Gammell P, et al. MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur J Cancer 2009; 45:3104 - 18; http://dx.doi.org/10.1016/j.ejca.2009.09.014; PMID: 19818597
  • Kuo TY, Hsi E, Yang IP, Tsai PC, Wang JY, Juo SH. Computational analysis of mRNA expression profiles identifies microRNA-29a/c as predictor of colorectal cancer early recurrence. PLoS One 2012; 7:e31587; http://dx.doi.org/10.1371/journal.pone.0031587; PMID: 22348113
  • Hatakeyama S. TRIM proteins and cancer. Nat Rev Cancer 2011; 11:792 - 804; http://dx.doi.org/10.1038/nrc3139; PMID: 21979307
  • Miyajima N, Maruyama S, Bohgaki M, Kano S, Shigemura M, Shinohara N, et al. TRIM68 regulates ligand-dependent transcription of androgen receptor in prostate cancer cells. Cancer Res 2008; 68:3486 - 94; http://dx.doi.org/10.1158/0008-5472.CAN-07-6059; PMID: 18451177
  • Ai J, Huang H, Lv X, Tang Z, Chen M, Chen T, et al. FLNA and PGK1 are two potential markers for progression in hepatocellular carcinoma. Cell Physiol Biochem 2011; 27:207 - 16; http://dx.doi.org/10.1159/000327946; PMID: 21471709
  • Zieker D, Königsrainer I, Traub F, Nieselt K, Knapp B, Schillinger C, et al. PGK1 a potential marker for peritoneal dissemination in gastric cancer. Cell Physiol Biochem 2008; 21:429 - 36; http://dx.doi.org/10.1159/000129635; PMID: 18453750
  • LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V, et al. Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res 2002; 62:4499 - 506; PMID: 12154061
  • Li M, Zhang B, Sun B, Wang X, Ban X, Sun T, et al. A novel function for vimentin: the potential biomarker for predicting melanoma hematogenous metastasis. J Exp Clin Cancer Res 2010; 29:109; http://dx.doi.org/10.1186/1756-9966-29-109; PMID: 20701774
  • Zieker D, Königsrainer I, Weinreich J, Beckert S, Glatzle J, Nieselt K, et al. Phosphoglycerate kinase 1 promoting tumor progression and metastasis in gastric cancer - detected in a tumor mouse model using positron emission tomography/magnetic resonance imaging. Cell Physiol Biochem 2010; 26:147 - 54; http://dx.doi.org/10.1159/000320545; PMID: 20798498
  • Duan Z, Lamendola DE, Yusuf RZ, Penson RT, Preffer FI, Seiden MV. Overexpression of human phosphoglycerate kinase 1 (PGK1) induces a multidrug resistance phenotype. Anticancer Res 2002; 22:1933 - 41; PMID: 12174867
  • Jung Y, Shiozawa Y, Wang J, Wang J, Wang Z, Pedersen EA, et al. Expression of PGK1 by prostate cancer cells induces bone formation. Mol Cancer Res 2009; 7:1595 - 604; http://dx.doi.org/10.1158/1541-7786.MCR-09-0072; PMID: 19825988
  • Wang J, Ying G, Wang J, Jung Y, Lu J, Zhu J, et al. Characterization of phosphoglycerate kinase-1 expression of stromal cells derived from tumor microenvironment in prostate cancer progression. Cancer Res 2010; 70:471 - 80; http://dx.doi.org/10.1158/0008-5472.CAN-09-2863; PMID: 20068185
  • Tie J, Serizawa Y, Oshida S, Usami R, Yoshida Y. Short tandem repeat polymorphism in the flanking region of the human phosphoglycerate kinase gene in a Japanese population. Hum Biol 2006; 78:243 - 7; http://dx.doi.org/10.1353/hub.2006.0039; PMID: 17036931
  • Riley DE, Krieger JN. Short tandem repeat polymorphism linkage to the androgen receptor gene in prostate carcinoma. Cancer 2001; 92:2603 - 8; http://dx.doi.org/10.1002/1097-0142(20011115)92:10<2603::AID-CNCR1613>3.0.CO;2-4; PMID: 11745195
  • Sarkar FH, Li Y. Harnessing the fruits of nature for the development of multi-targeted cancer therapeutics. Cancer Treat Rev 2009; 35:597 - 607; http://dx.doi.org/10.1016/j.ctrv.2009.07.001; PMID: 19660870
  • Vardi A, Bosviel R, Rabiau N, Adjakly M, Satih S, Dechelotte P, et al. Soy phytoestrogens modify DNA methylation of GSTP1, RASSF1A, EPH2 and BRCA1 promoter in prostate cancer cells. In Vivo 2010; 24:393 - 400; PMID: 20668305
  • Majid S, Dar AA, Shahryari V, Hirata H, Ahmad A, Saini S, et al. Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B-Cell translocation gene 3 in prostate cancer. Cancer 2010; 116:66 - 76; PMID: 19885928
  • Kikuno N, Shiina H, Urakami S, Kawamoto K, Hirata H, Tanaka Y, et al. Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int J Cancer 2008; 123:552 - 60; http://dx.doi.org/10.1002/ijc.23590; PMID: 18431742
  • Fang MZ, Chen D, Sun Y, Jin Z, Christman JK, Yang CS. Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 2005; 11:7033 - 41; http://dx.doi.org/10.1158/1078-0432.CCR-05-0406; PMID: 16203797
  • Chen Y, Zaman MS, Deng G, Majid S, Saini S, Liu J, et al. MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev Res (Phila) 2011; 4:76 - 86; http://dx.doi.org/10.1158/1940-6207.CAPR-10-0167; PMID: 21071579
  • Zaman MS, Chen Y, Deng G, Shahryari V, Suh SO, Saini S, et al. The functional significance of microRNA-145 in prostate cancer. Br J Cancer 2010; 103:256 - 64; http://dx.doi.org/10.1038/sj.bjc.6605742; PMID: 20588276
  • Chang S, Wang RH, Akagi K, Kim KA, Martin BK, Cavallone L, et al, Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer (kConFab). Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nat Med 2011; 17:1275 - 82; http://dx.doi.org/10.1038/nm.2459; PMID: 21946536
  • Zhong XY, Yu JH, Zhang WG, Wang ZD, Dong Q, Tai S, et al. MicroRNA-421 functions as an oncogenic miRNA in biliary tract cancer through down-regulating farnesoid X receptor expression. Gene 2012; 493:44 - 51; http://dx.doi.org/10.1016/j.gene.2011.11.028; PMID: 22146319
  • Li Y, Wang Z, Kong D, Li R, Sarkar SH, Sarkar FH. Regulation of Akt/FOXO3a/GSK-3beta/AR signaling network by isoflavone in prostate cancer cells. J Biol Chem 2008; 283:27707 - 16; http://dx.doi.org/10.1074/jbc.M802759200; PMID: 18687691
  • Li Y, Ahmed F, Ali S, Philip PA, Kucuk O, Sarkar FH. Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res 2005; 65:6934 - 42; http://dx.doi.org/10.1158/0008-5472.CAN-04-4604; PMID: 16061678
  • Kong D, Heath E, Chen W, Cher ML, Powell I, Heilbrun L, et al. Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One 2012; 7:e33729; http://dx.doi.org/10.1371/journal.pone.0033729; PMID: 22442719

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.