740
Views
2
CrossRef citations to date
0
Altmetric
Special Focus Review

Amniotic fluid stem cells to study mTOR signaling in differentiation

, , , , &
Pages 96-100 | Published online: 01 Jul 2012
 

Abstract

The protein kinase mTOR is the central player within a pathway, which is known to be involved in the regulation of e.g., cell size, cell cycle, apoptosis, autophagy, aging and differentiation. mTOR activity responds to many signals, including cellular stress, oxygen, nutrient availability, energy status and growth factors. Deregulation of this enzyme is causatively involved in the molecular development of monogenic human diseases, cancer, obesity, type 2 diabetes or neurodegeneration. Recently, mTOR has also been demonstrated to control stem cell homeostasis. A more detailed investigation of this new mTOR function will be of highest relevance to provide more explicit insights into stem cell regulation in the near future. Different cellular tools, including adult stem cells, embryonic stem cells or induced pluripotent stem cells could be used to investigate the role of mTOR in mammalian stem cell biology. Here we discuss the potential of amniotic fluid stem cells to become a promising cellular model to study the role of signaling cascades in stem cell homeostasis.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.