740
Views
2
CrossRef citations to date
0
Altmetric
Special Focus Review

Amniotic fluid stem cells to study mTOR signaling in differentiation

, , , , &
Pages 96-100 | Published online: 01 Jul 2012

References

  • Zhu H, Lensch MW, Cahan P, Daley GQ. Investigating monogenic and complex diseases with pluripotent stem cells. Nat Rev Genet 2011; 12:266 - 75; http://dx.doi.org/10.1038/nrg2951; PMID: 21386866
  • Mattis VB, Svendsen CN. Induced pluripotent stem cells: a new revolution for clinical neurology?. Lancet Neurol 2011; 10:383 - 94; http://dx.doi.org/10.1016/S1474-4422(11)70022-9; PMID: 21435601
  • Wu SM, Hochedlinger K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 2011; 13:497 - 505; http://dx.doi.org/10.1038/ncb0511-497; PMID: 21540845
  • Rosner M, Dolznig H, Schipany K, Mikula M, Brandau O, Hengstschläger M. Human amniotic fluid stem cells as a model for functional studies of genes involved in human genetic diseases or oncogenesis. Oncotarget 2011; 2:705 - 12; PMID: 21926447
  • Prusa AR, Hengstschläger M. Amniotic fluid cells and human stem cell research: a new connection. Med Sci Monit 2002; 8:RA253 - 7; PMID: 12444390
  • Prusa AR, Marton E, Rosner M, Bernaschek G, Hengstschläger M. Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research?. Hum Reprod 2003; 18:1489 - 93; http://dx.doi.org/10.1093/humrep/deg279; PMID: 12832377
  • Prusa AR, Marton E, Rosner M, Freilinger A, Bernaschek G, Hengstschläger M. Stem cell marker expression in human trisomy 21 amniotic fluid cells and trophoblasts. J Neural Transm Suppl 2003; 67:235 - 42; http://dx.doi.org/10.1007/978-3-7091-6721-2_21; PMID: 15068255
  • In ’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FHJ, Willemze R, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003; 102:1548 - 9; http://dx.doi.org/10.1182/blood-2003-04-1291; PMID: 12900350
  • Tsai M-S, Lee J-L, Chang Y-J, Hwang S-M. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 2004; 19:1450 - 6; http://dx.doi.org/10.1093/humrep/deh279; PMID: 15105397
  • Prusa AR, Marton E, Rosner M, Bettelheim D, Lubec G, Pollack A, et al. Neurogenic cells in human amniotic fluid. Am J Obstet Gynecol 2004; 191:309 - 14; http://dx.doi.org/10.1016/j.ajog.2003.12.014; PMID: 15295384
  • Karlmark KR, Freilinger A, Marton E, Rosner M, Lubec G, Hengstschläger M. Activation of ectopic Oct-4 and Rex-1 promoters in human amniotic fluid cells. Int J Mol Med 2005; 16:987 - 92; PMID: 16273276
  • Bossolasco P, Montemurro T, Cova L, Zangrossi S, Calzarossa C, Buiatiotis S, et al. Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Res 2006; 16:329 - 36; http://dx.doi.org/10.1038/sj.cr.7310043; PMID: 16617328
  • Tsai M-S, Hwang S-M, Tsai Y-L, Cheng F-C, Lee J-L, Chang YJ. Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol Reprod 2006; 74:545 - 51; http://dx.doi.org/10.1095/biolreprod.105.046029; PMID: 16306422
  • Kim J, Lee Y, Kim H, Hwang KJ, Kwon HC, Kim SK, et al. Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif 2007; 40:75 - 90; http://dx.doi.org/10.1111/j.1365-2184.2007.00414.x; PMID: 17227297
  • Rehni AK, Singh N, Jaggi AS, Singh M. Amniotic fluid derived stem cells ameliorate focal cerebral ischaemia-reperfusion injury induced behavioural deficits in mice. Behav Brain Res 2007; 183:95 - 100; http://dx.doi.org/10.1016/j.bbr.2007.05.028; PMID: 17619060
  • Kolambkar YM, Peister A, Soker S, Atala A, Guldberg RE. Chondrogenic differentiation of amniotic fluid-derived stem cells. J Mol Histol 2007; 38:405 - 13; http://dx.doi.org/10.1007/s10735-007-9118-1; PMID: 17668282
  • De Coppi P, Bartsch G Jr., Siddiqui MM, Xu T, Santos CC, Perin L, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25:100 - 6; http://dx.doi.org/10.1038/nbt1274; PMID: 17206138
  • Valli A, Rosner M, Fuchs C, Siegel N, Bishop CE, Dolznig H, et al. Embryoid body formation of human amniotic fluid stem cells depends on mTOR. Oncogene 2010; 29:966 - 77; http://dx.doi.org/10.1038/onc.2009.405; PMID: 19935716
  • Orciani M, Emanuelli M, Martino C, Pugnaloni A, Tranquilli AL, Di Primio R. Potential role of culture mediums for successful isolation and neuronal differentiation of amniotic fluid stem cells. Int J Immunopathol Pharmacol 2008; 21:595 - 602; PMID: 18831926
  • Ditadi A, de Coppi P, Picone O, Gautreau L, Smati R, Six E, et al. Human and murine amniotic fluid c-Kit+Lin- cells display hematopoietic activity. Blood 2009; 113:3953 - 60; http://dx.doi.org/10.1182/blood-2008-10-182105; PMID: 19221036
  • Jezierski A, Gruslin A, Tremblay R, Ly D, Smith C, Turksen K, et al. Probing stemness and neural commitment in human amniotic fluid cells. Stem Cell Rev 2010; 6:199 - 214; http://dx.doi.org/10.1007/s12015-010-9116-7; PMID: 20221716
  • Mareschi K, Rustichelli D, Comunanza V, De Fazio R, Cravero C, Morterra G, et al. Multipotent mesenchymal stem cells from amniotic fluid originate neural precursors with functional voltage-gated sodium channels. Cytotherapy 2009; 11:534 - 47; http://dx.doi.org/10.1080/14653240902974024; PMID: 19548144
  • Pfeiffer S, McLaughlin D. In vitro differentiation of human amniotic fluid-derived cells: augmentation towards a neuronal dopaminergic phenotype. Cell Biol Int 2010; 34:959 - 67; http://dx.doi.org/10.1042/CBI20090445; PMID: 20388119
  • Pappa KI, Anagnou NP. Novel sources of fetal stem cells: where do they fit on the developmental continuum?. Regen Med 2009; 4:423 - 33; http://dx.doi.org/10.2217/rme.09.12; PMID: 19438317
  • Dobreva MP, Pereira PNG, Deprest J, Zwijsen A. On the origin of amniotic stem cells: of mice and men. Int J Dev Biol 2010; 54:761 - 77; http://dx.doi.org/10.1387/ijdb.092935md; PMID: 20446274
  • Pozzobon M, Ghionzoli M, De Coppi P. ES, iPS, MSC, and AFS cells. Stem cells exploitation for Pediatric Surgery: current research and perspective. Pediatr Surg Int 2010; 26:3 - 10; http://dx.doi.org/10.1007/s00383-009-2478-8; PMID: 19727766
  • Abdulrazzak H, Moschidou D, Jones G, Guillot PV. Biological characteristics of stem cells from foetal, cord blood and extraembryonic tissues. J R Soc Interface 2010; 7:Suppl 6 S689 - 706; http://dx.doi.org/10.1098/rsif.2010.0347.focus; PMID: 20739312
  • Da Sacco S, Sedrakyan S, Boldrin F, Giuliani S, Parnigotto PP, Habibian R, et al. Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications. J Urol 2010; 183:1193 - 200; http://dx.doi.org/10.1016/j.juro.2009.11.006; PMID: 20096867
  • Rosner M, Mikula M, Preitschopf A, Feichtinger M, Schipany K, Hengstschläger M. Neurogenic differentiation of amniotic fluid stem cells. Amino Acids 2012; 42:1591 - 6; http://dx.doi.org/10.1007/s00726-011-0929-8; PMID: 21573873
  • Gundacker C, Dolznig H, Mikula M, Rosner M, Brandau O, Hengstschläger M. Amniotic fluid stem cell-based models to study the effects of gene mutations and toxicants on male germ cell formation. Asian J Androl 2012; 14:247 - 50; http://dx.doi.org/10.1038/aja.2011.170; PMID: 22231297
  • Raymond FL, Whittaker J, Jenkins L, Lench N, Chitty LS. Molecular prenatal diagnosis: the impact of modern technologies. Prenat Diagn 2010; 30:674 - 81; http://dx.doi.org/10.1002/pd.2575; PMID: 20572117
  • Nicolaides KH. Turning the pyramid of prenatal care. Fetal Diagn Ther 2011; 29:183 - 96; http://dx.doi.org/10.1159/000324320; PMID: 21389681
  • Nizard J. Amniocentesis: technique and education. Curr Opin Obstet Gynecol 2010; 22:152 - 4; http://dx.doi.org/10.1097/GCO.0b013e32833723a0; PMID: 20098324
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126:663 - 76; http://dx.doi.org/10.1016/j.cell.2006.07.024; PMID: 16904174
  • Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008; 321:1218 - 21; http://dx.doi.org/10.1126/science.1158799; PMID: 18669821
  • Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, et al. Disease-specific induced pluripotent stem cells. Cell 2008; 134:877 - 86; http://dx.doi.org/10.1016/j.cell.2008.07.041; PMID: 18691744
  • Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, et al. Epigenetic memory in induced pluripotent stem cells. Nature 2010; 467:285 - 90; http://dx.doi.org/10.1038/nature09342; PMID: 20644535
  • Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S, et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 2010; 465:175 - 81; http://dx.doi.org/10.1038/nature09017; PMID: 20418860
  • Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 2011; 8:106 - 18; http://dx.doi.org/10.1016/j.stem.2010.12.003; PMID: 21211785
  • Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT, et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 2010; 7:521 - 31; http://dx.doi.org/10.1016/j.stem.2010.07.017; PMID: 20887957
  • Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 2011; 471:63 - 7; http://dx.doi.org/10.1038/nature09805; PMID: 21368825
  • Pasi CE, Dereli-Öz A, Negrini S, Friedli M, Fragola G, Lombardo A, et al. Genomic instability in induced stem cells. Cell Death Differ 2011; 18:745 - 53; http://dx.doi.org/10.1038/cdd.2011.9; PMID: 21311564
  • Rosner M, Siegel N, Fuchs C, Slabina N, Dolznig H, Hengstschläger M. Efficient siRNA-mediated prolonged gene silencing in human amniotic fluid stem cells. Nat Protoc 2010; 5:1081 - 95; http://dx.doi.org/10.1038/nprot.2010.74; PMID: 20539284
  • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149:274 - 93; http://dx.doi.org/10.1016/j.cell.2012.03.017; PMID: 22500797
  • Polak P, Hall MN. mTOR and the control of whole body metabolism. Curr Opin Cell Biol 2009; 21:209 - 18; http://dx.doi.org/10.1016/j.ceb.2009.01.024; PMID: 19261457
  • Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009; 10:307 - 18; http://dx.doi.org/10.1038/nrm2672; PMID: 19339977
  • Blagosklonny MV. Revisiting the antagonistic pleiotropy theory of aging: TOR-driven program and quasi-program. Cell Cycle 2010; 9:3151 - 6; http://dx.doi.org/10.4161/cc.9.16.13120; PMID: 20724817
  • Wong KK, Engelman JA, Cantley LC. Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev 2010; 20:87 - 90; http://dx.doi.org/10.1016/j.gde.2009.11.002; PMID: 20006486
  • Rosner M, Hanneder M, Siegel N, Valli A, Fuchs C, Hengstschläger M. The mTOR pathway and its role in human genetic diseases. Mutat Res 2008; 659:284 - 92; http://dx.doi.org/10.1016/j.mrrev.2008.06.001; PMID: 18598780
  • Russell RC, Fang C, Guan K-L. An emerging role for TOR signaling in mammalian tissue and stem cell physiology. Development 2011; 138:3343 - 56; http://dx.doi.org/10.1242/dev.058230; PMID: 21791526
  • Gangloff YG, Mueller M, Dann SG, Svoboda P, Sticker M, Spetz JF, et al. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol 2004; 24:9508 - 16; http://dx.doi.org/10.1128/MCB.24.21.9508-9516.2004; PMID: 15485918
  • Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 2004; 24:6710 - 8; http://dx.doi.org/10.1128/MCB.24.15.6710-6718.2004; PMID: 15254238
  • Siegel N, Valli A, Fuchs C, Rosner M, Hengstschläger M. Expression of mTOR pathway proteins in human amniotic fluid stem cells. Int J Mol Med 2009; 23:779 - 84; PMID: 19424604
  • Zhou J, Su P, Wang L, Chen J, Zimmermann M, Genbacev O, et al. mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proc Natl Acad Sci U S A 2009; 106:7840 - 5; http://dx.doi.org/10.1073/pnas.0901854106; PMID: 19416884
  • Fuchs C, Rosner M, Dolznig H, Mikula M, Kramer N, Hengstschläger M. Tuberin and PRAS40 are anti-apoptotic gatekeepers during early human amniotic fluid stem-cell differentiation. Hum Mol Genet 2012; 21:1049 - 61; http://dx.doi.org/10.1093/hmg/ddr535; PMID: 22090422
  • Perin L, Giuliani S, Jin D, Sedrakyan S, Carraro G, Habibian R, et al. Renal differentiation of amniotic fluid stem cells. Cell Prolif 2007; 40:936 - 48; http://dx.doi.org/10.1111/j.1365-2184.2007.00478.x; PMID: 18021180
  • Siegel N, Valli A, Fuchs C, Rosner M, Hengstschläger M. Induction of mesenchymal/epithelial marker expression in human amniotic fluid stem cells. Reprod Biomed Online 2009; 19:838 - 46; http://dx.doi.org/10.1016/j.rbmo.2009.09.015; PMID: 20031026
  • Siegel N, Rosner M, Unbekandt M, Fuchs C, Slabina N, Dolznig H, et al. Contribution of human amniotic fluid stem cells to renal tissue formation depends on mTOR. Hum Mol Genet 2010; 19:3320 - 31; http://dx.doi.org/10.1093/hmg/ddq236; PMID: 20542987
  • Perin L, Sedrakyan S, Giuliani S, Da Sacco S, Carraro G, Shiri L, et al. Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS One 2010; 5:e9357; http://dx.doi.org/10.1371/journal.pone.0009357; PMID: 20195358
  • Rosner M, Schipany K, Gundacker C, Shanmugasundaram B, Li K, Fuchs C, et al. Renal differentiation of amniotic fluid stem cells: perspectives for clinical application and for studies on specific human genetic diseases. Eur J Clin Invest 2012; 42:677 - 84; http://dx.doi.org/10.1111/j.1365-2362.2011.02622.x; PMID: 22060053
  • Lee KW, Yook JY, Son MY, Kim MJ, Koo DB, Han YM, et al. Rapamycin promotes the osteoblastic differentiation of human embryonic stem cells by blocking the mTOR pathway and stimulating the BMP/Smad pathway. Stem Cells Dev 2010; 19:557 - 68; http://dx.doi.org/10.1089/scd.2009.0147; PMID: 19642865

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.