616
Views
3
CrossRef citations to date
0
Altmetric
Views and Commentary

Morphology and electrostatics play active role in neuronal differentiation processes on flexible conducting substrates

, &
Pages 1-5 | Received 12 Oct 2013, Accepted 14 Nov 2013, Published online: 26 Nov 2013
 

Abstract

This commentary discusses and summarizes the key highlights of our recently reported work entitled “Neuronal Differentiation of Embryonic Stem Cell Derived Neuronal Progenitors Can Be Regulated by Stretchable Conducting Polymers.” The prospect of controlling the mechanical-rigidity and the surface conductance properties offers a unique combination for tailoring the growth and differentiation of neuronal cells. We emphasize the utility of transparent elastomeric substrates with coatings of electrically conducting polymer to realize the desired substrate-characteristics for cellular development processes. Our study showed that neuronal differentiation from ES cells is highly influenced by the specific substrates on which they are growing. Thus, our results provide a better strategy for regulated neuronal differentiation by using such functional conducting surfaces.

This article refers to:

10.4161/org.27213

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.