616
Views
3
CrossRef citations to date
0
Altmetric
Views and Commentary

Morphology and electrostatics play active role in neuronal differentiation processes on flexible conducting substrates

, &
Pages 1-5 | Received 12 Oct 2013, Accepted 14 Nov 2013, Published online: 26 Nov 2013

References

  • Lo CM, Wang HB, Dembo M, Wang YL. Cell movement is guided by the rigidity of the substrate. Biophys J 2000; 79:144 - 52; http://dx.doi.org/10.1016/S0006-3495(00)76279-5; PMID: 10866943
  • Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 2003; 24:4385 - 415; http://dx.doi.org/10.1016/S0142-9612(03)00343-0; PMID: 12922151
  • Pelham RJ Jr., Wang Yl. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 1997; 94:13661 - 5; http://dx.doi.org/10.1073/pnas.94.25.13661; PMID: 9391082
  • Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126:677 - 89; http://dx.doi.org/10.1016/j.cell.2006.06.044; PMID: 16923388
  • Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate. Nature 2009; 462:433 - 41; http://dx.doi.org/10.1038/nature08602; PMID: 19940913
  • Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005; 23:47 - 55; http://dx.doi.org/10.1038/nbt1055; PMID: 15637621
  • Wang Y, Kim HJ, Vunjak-Novakovic G, Kaplan DL, Vunjak-Novakovic G, Kaplan DL. Stem cell-based tissue engineering with silk biomaterials. Biomaterials 2006; 27:6064 - 82; http://dx.doi.org/10.1016/j.biomaterials.2006.07.008; PMID: 16890988
  • Tay CY, Yu H, Pal M, Leong WS, Tan NS, Ng KW, Leong DT, Tan LP. Micropatterned matrix directs differentiation of human mesenchymal stem cells towards myocardial lineage. Exp Cell Res 2010; 316:1159 - 68; http://dx.doi.org/10.1016/j.yexcr.2010.02.010; PMID: 20156435
  • Dawson E, Mapili G, Erickson K, Taqvi S, Roy K, Taqvi S, Roy K. Biomaterials for stem cell differentiation. Adv Drug Deliv Rev 2008; 60:215 - 28; http://dx.doi.org/10.1016/j.addr.2007.08.037; PMID: 17997187
  • Metallo CM, Mohr JC, Detzel CJ, de Pablo JJ, Van Wie BJ, Palecek SP. Engineering the stem cell microenvironment. Biotechnol Prog 2007; 23:18 - 23; http://dx.doi.org/10.1021/bp060350a; PMID: 17269664
  • Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 2009; 5:17 - 26; http://dx.doi.org/10.1016/j.stem.2009.06.016; PMID: 19570510
  • Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, Healy KE. Substrate modulus directs neural stem cell behavior. Biophys J 2008; 95:4426 - 38; http://dx.doi.org/10.1529/biophysj.108.132217; PMID: 18658232
  • Keung AJ, Healy KE, Kumar S, Schaffer DV. Biophysics and dynamics of natural and engineered stem cell microenvironments. Wiley Interdiscip Rev Syst Biol Med 2010; 2:49 - 64; http://dx.doi.org/10.1002/wsbm.46; PMID: 20836010
  • Kataoka K, Scholz C, Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci 2007; 32:876 - 921; http://dx.doi.org/10.1016/j.progpolymsci.2007.05.012
  • Srivastava N, Venugopalan V, Divya MS, Rasheed VA, James J, Narayan KS. Neuronal differentiation of embryonic stem cell derived neuronal progenitors can be regulated by stretchable conducting polymers. Tissue Eng Part A 2013; 19:1984 - 93; http://dx.doi.org/10.1089/ten.tea.2012.0626; PMID: 23544950
  • Adams JC, Watt FM. Regulation of development and differentiation by the extracellular matrix. Development 1993; 117:1183 - 98; PMID: 8404525
  • Eyckmans J, Boudou T, Yu X, Chen CS. A hitchhiker’s guide to mechanobiology. Dev Cell 2011; 21:35 - 47; http://dx.doi.org/10.1016/j.devcel.2011.06.015; PMID: 21763607
  • Ventre M, Causa F, Netti PA. Determinants of cell-material crosstalk at the interface: towards engineering of cell instructive materials. J R Soc Interface 2012; 9:2017 - 32; http://dx.doi.org/10.1098/rsif.2012.0308; PMID: 22753785
  • Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng 2005; 11:1 - 18; http://dx.doi.org/10.1089/ten.2005.11.1; PMID: 15738657
  • Curtis AS, Casey B, Gallagher JO, Pasqui D, Wood MA, Wilkinson CD. Substratum nanotopography and the adhesion of biological cells. Are symmetry or regularity of nanotopography important?. Biophys Chem 2001; 94:275 - 83; http://dx.doi.org/10.1016/S0301-4622(01)00247-2; PMID: 11804737
  • Denis FA, Hanarp P, Sutherland DS, Gold J, Mustin C, Rouxhet PG, Dufrêne YF. Protein Adsorption on Model Surfaces with Controlled Nanotopography and Chemistry. Langmuir 2002; 18:819 - 28; http://dx.doi.org/10.1021/la011011o
  • Sethuraman A, Han M, Kane RS, Belfort G. Effect of surface wettability on the adhesion of proteins. Langmuir 2004; 20:7779 - 88; http://dx.doi.org/10.1021/la049454q; PMID: 15323531
  • Crispin X, Jakobsson FLE, Crispin A, Grim PCM, Andersson P, Volodin A, van Haesendonck C, Van der Auweraer M, Salaneck WR, Berggren M. The Origin of the High Conductivity of Poly(3,4-ethylenedioxythiophene)−Poly(styrenesulfonate) (PEDOT−PSS) Plastic Electrodes. Chem Mater 2006; 18:4354 - 60; http://dx.doi.org/10.1021/cm061032+
  • Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR. Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future. Adv Mater 2000; 12:481 - 94; http://dx.doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
  • Yang J, Lipkin K, Martin DC. Electrochemical fabrication of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibrils on microfabricated neural prosthetic devices. J Biomater Sci Polym Ed 2007; 18:1075 - 89; http://dx.doi.org/10.1163/156856207781494359; PMID: 17705999
  • Richardson-Burns SM, Hendricks JL, Foster B, Povlich LK, Kim D-H, Martin DC. Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials 2007; 28:1539 - 52; http://dx.doi.org/10.1016/j.biomaterials.2006.11.026; PMID: 17169420
  • Yang SY, Kim BN, Zakhidov AA, Taylor PG, Lee J-K, Ober CK, Lindau M, Malliaras GG. Detection of transmitter release from single living cells using conducting polymer microelectrodes. Adv Mater 2011; 23:H184 - 8; http://dx.doi.org/10.1002/adma.201100035; PMID: 21400618
  • Song HK, Toste B, Ahmann K, Hoffman-Kim D, Palmore GT. Micropatterns of positive guidance cues anchored to polypyrrole doped with polyglutamic acid: a new platform for characterizing neurite extension in complex environments. Biomaterials 2006; 27:473 - 84; http://dx.doi.org/10.1016/j.biomaterials.2005.06.030; PMID: 16112728
  • Yan Y, Zhang Z, Stokes JR, Zhou Q-Z, Ma G-H, Adams MJ. Mechanical characterization of agarose micro-particles with a narrow size distribution. Powder Technol 2009; 192:122 - 30; http://dx.doi.org/10.1016/j.powtec.2008.12.006
  • Lee JY, Bashur CA, Goldstein AS, Schmidt CE. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 2009; 30:4325 - 35; http://dx.doi.org/10.1016/j.biomaterials.2009.04.042; PMID: 19501901
  • Green RA, Lovell NH, Poole-Warren LA. Cell attachment functionality of bioactive conducting polymers for neural interfaces. Biomaterials 2009; 30:3637 - 44; http://dx.doi.org/10.1016/j.biomaterials.2009.03.043; PMID: 19375160
  • Cui X, Wiler J, Dzaman M, Altschuler RA, Martin DC. In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials 2003; 24:777 - 87; http://dx.doi.org/10.1016/S0142-9612(02)00415-5; PMID: 12485796
  • Collazos-Castro JE, Polo JL, Hernández-Labrado GR, Padial-Cañete V, García-Rama C. Bioelectrochemical control of neural cell development on conducting polymers. Biomaterials 2010; 31:9244 - 55; http://dx.doi.org/10.1016/j.biomaterials.2010.08.057; PMID: 20864170
  • Diaz AF, Castillo JI, Logan JA, Lee W-Y. Electrochemistry of conducting polypyrrole films. J Electroanal Chem Interfacial Electrochem 1981; 129:115 - 32; http://dx.doi.org/10.1016/S0022-0728(81)80008-3
  • Green RA, Lovell NH, Wallace GG, Poole-Warren LA. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 2008; 29:3393 - 9; http://dx.doi.org/10.1016/j.biomaterials.2008.04.047; PMID: 18501423
  • Hwang NS, Varghese S, Elisseeff J. Controlled differentiation of stem cells. Adv Drug Deliv Rev 2008; 60:199 - 214; http://dx.doi.org/10.1016/j.addr.2007.08.036; PMID: 18006108
  • Yim EKF, Darling EM, Kulangara K, Guilak F, Leong KW. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 2010; 31:1299 - 306; http://dx.doi.org/10.1016/j.biomaterials.2009.10.037; PMID: 19879643
  • Discher DE, Janmey P, Wang Y-L. Tissue cells feel and respond to the stiffness of their substrate. Science 2005; 310:1139 - 43; http://dx.doi.org/10.1126/science.1116995; PMID: 16293750
  • Gilbert PM, Havenstrite KL, Magnusson KEG, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 2010; 329:1078 - 81; http://dx.doi.org/10.1126/science.1191035; PMID: 20647425
  • Leipzig ND, Shoichet MS. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 2009; 30:6867 - 78; http://dx.doi.org/10.1016/j.biomaterials.2009.09.002; PMID: 19775749
  • Dellatore SM, Garcia AS, Miller WM. Mimicking stem cell niches to increase stem cell expansion. Curr Opin Biotechnol 2008; 19:534 - 40; http://dx.doi.org/10.1016/j.copbio.2008.07.010; PMID: 18725291
  • Vijay V, Rao AD, Narayan KS. In situ studies of strain dependent transport properties of conducting polymers on elastomeric substrates. J Appl Phys 2011; 109:084525; http://dx.doi.org/10.1063/1.3580514
  • Eyckmans J, Boudou T, Yu X, Chen CS. A hitchhiker’s guide to mechanobiology. Dev Cell 2011; 21:35 - 47; http://dx.doi.org/10.1016/j.devcel.2011.06.015; PMID: 21763607
  • McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 2004; 6:483 - 95; http://dx.doi.org/10.1016/S1534-5807(04)00075-9; PMID: 15068789

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.