893
Views
10
CrossRef citations to date
0
Altmetric
Research Paper

Mesophyll-localized phytochromes gate stress- and light-inducible anthocyanin accumulation in Arabidopsis thaliana

, &
Article: e28013 | Received 24 Jan 2014, Accepted 27 Jan 2014, Published online: 17 Feb 2014
 

Abstract

Abiotic stress and light induce anthocyanin accumulation in Arabidopsis. Here, we demonstrate that mesophyll-localized phytochromes regulate nitrogen-, phosphate- and cold-induced anthocyanin accumulation in shoots of Arabidopsis. Whereas ecotype-dependent differences result in distinct total levels of anthocyanin accumulation in response to light, cold, or nutrient-deficient treatments, phytochromes generally gate light- and/or stress-induced anthocyanin accumulation in shoots, as plants depleted of mesophyll-localized phytochromes lack or have highly attenuated induction of anthocyanins. Observed interactions between light and stress were found to be wavelength dependent, with red and far-red light stimulating higher total levels of anthocyanin accumulation under cold temperatures, especially in response to nitrogen limitation, whereas blue light did not. The roots of plants depleted of mesophyll-localized phytochromes still respond to nutrient deficiency as determined by elongation of primary roots and root hair elongation when plants are grown under nitrogen- or phosphate-limited conditions. Plants which are constitutively deficient in photoreceptors in both shoots and roots, i.e., phy or cry mutants, exhibit defects in light- and stress-induced anthocyanin accumulation and defects in root development. Taken together, these results suggest that the response to nutrient limitation in roots and shoots is under distinct control by spatial-specific pools of phytochromes in Arabidopsis.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

This work was supported by the National Science Foundation (grant no. MCB-0919100 to B.L.M.). We thank Dr Robert Larkin for providing cry1 and cry2 seeds.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.