895
Views
10
CrossRef citations to date
0
Altmetric
Research Paper

Mesophyll-localized phytochromes gate stress- and light-inducible anthocyanin accumulation in Arabidopsis thaliana

, &
Article: e28013 | Received 24 Jan 2014, Accepted 27 Jan 2014, Published online: 17 Feb 2014

References

  • Tonelli C, Dolfini S, Ronchi A, Consonni G, Gavazzi G. Light inducibility and tissue specificity of the R gene family in maize. Genetica 1994; 94:225 - 34; http://dx.doi.org/10.1007/BF01443436
  • Rabino I, Mancinelli AL. Light, temperature, and anthocyanin production. Plant Physiol 1986; 81:922 - 4; http://dx.doi.org/10.1104/pp.81.3.922; PMID: 16664926
  • Drumm-Herrel H, Mohr H. Photosensitivity of seedlings differing in their potential to synthesize anthocyanin. Physiol Plant 1985; 64:60 - 6; http://dx.doi.org/10.1111/j.1399-3054.1985.tb01213.x
  • Ahmad M, Lin C, Cashmore AR. Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. Plant J 1995; 8:653 - 8; http://dx.doi.org/10.1046/j.1365-313X.1995.08050653.x; PMID: 8528277
  • Ahmad M, Cashmore AR. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana.. Plant J 1997; 11:421 - 7; http://dx.doi.org/10.1046/j.1365-313X.1997.11030421.x; PMID: 9107032
  • Montgomery BL, Yeh KC, Crepeau MW, Lagarias JC. Modification of distinct aspects of photomorphogenesis via targeted expression of mammalian biliverdin reductase in transgenic Arabidopsis plants. Plant Physiol 1999; 121:629 - 39; http://dx.doi.org/10.1104/pp.121.2.629; PMID: 10517855
  • Ahmad M, Jarillo JA, Smirnova O, Cashmore AR. Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism. Nature 1998; 392:720 - 3; http://dx.doi.org/10.1038/33701; PMID: 9565033
  • Fox AR, Soto GC, Jones AM, Casal JJ, Muschietti JP, Mazzella MA. cry1 and GPA1 signaling genetically interact in hook opening and anthocyanin synthesis in Arabidopsis. Plant Mol Biol 2012; 80:315 - 24; http://dx.doi.org/10.1007/s11103-012-9950-x; PMID: 22855128
  • Neff MM, Chory J. Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol 1998; 118:27 - 35; http://dx.doi.org/10.1104/pp.118.1.27; PMID: 9733523
  • Costigan SE, Warnasooriya SN, Humphries BA, Montgomery BL. Root-localized phytochrome chromophore synthesis is required for photoregulation of root elongation and impacts root sensitivity to jasmonic acid in Arabidopsis. Plant Physiol 2011; 157:1138 - 50; http://dx.doi.org/10.1104/pp.111.184689; PMID: 21875894
  • Endo M, Mochizuki N, Suzuki T, Nagatani A. CRYPTOCHROME2 in vascular bundles regulates flowering in Arabidopsis. Plant Cell 2007; 19:84 - 93; http://dx.doi.org/10.1105/tpc.106.048157; PMID: 17259260
  • Endo M, Nakamura S, Araki T, Mochizuki N, Nagatani A. Phytochrome B in the mesophyll delays flowering by suppressing FLOWERING LOCUS T expression in Arabidopsis vascular bundles. Plant Cell 2005; 17:1941 - 52; http://dx.doi.org/10.1105/tpc.105.032342; PMID: 15965119
  • Warnasooriya SN, Montgomery BL. Detection of spatial-specific phytochrome responses using targeted expression of biliverdin reductase in Arabidopsis. Plant Physiol 2009; 149:424 - 33; http://dx.doi.org/10.1104/pp.108.127050; PMID: 18971430
  • Leyva A, Jarillo JA, Salinas J, Martinez-Zapater JM. Low temperature induces the accumulation of Phenylalanine Ammonia-Lyase and Chalcone Synthase mRNAs of Arabidopsis thaliana in a light-dependent manner. Plant Physiol 1995; 108:39 - 46; PMID: 12228452
  • Zhang Y, Zheng S, Liu Z, Wang L, Bi Y. Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings. J Plant Physiol 2011; 168:367 - 74; http://dx.doi.org/10.1016/j.jplph.2010.07.025; PMID: 20932601
  • Oyama T, Shimura Y, Okada K. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 1997; 11:2983 - 95; http://dx.doi.org/10.1101/gad.11.22.2983; PMID: 9367981
  • Holm M, Ma L-G, Qu L-J, Deng X-W. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev 2002; 16:1247 - 59; http://dx.doi.org/10.1101/gad.969702; PMID: 12023303
  • Vandenbussche F, Habricot Y, Condiff AS, Maldiney R, Van der Straeten D, Ahmad M. HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana.. Plant J 2007; 49:428 - 41; http://dx.doi.org/10.1111/j.1365-313X.2006.02973.x; PMID: 17217468
  • Atkinson D. Some general effects of phosphorus deficiency on growth and development. New Phytol 1973; 72:101 - 11; http://dx.doi.org/10.1111/j.1469-8137.1973.tb02014.x
  • Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A, Paz-Ares J. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 2001; 15:2122 - 33; http://dx.doi.org/10.1101/gad.204401; PMID: 11511543
  • Nilsson L, Müller R, Nielsen TH. Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana.. Plant Cell Environ 2007; 30:1499 - 512; http://dx.doi.org/10.1111/j.1365-3040.2007.01734.x; PMID: 17927693
  • Narise T, Kobayashi K, Baba S, Shimojima M, Masuda S, Fukaki H, Ohta H. Involvement of auxin signaling mediated by IAA14 and ARF7/19 in membrane lipid remodeling during phosphate starvation. Plant Mol Biol 2010; 72:533 - 44; http://dx.doi.org/10.1007/s11103-009-9589-4; PMID: 20043234
  • Sánchez-Calderón L, López-Bucio J, Chacón-López A, Gutiérrez-Ortega A, Hernández-Abreu E, Herrera-Estrella L. Characterization of low phosphorus insensitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency. Plant Physiol 2006; 140:879 - 89; http://dx.doi.org/10.1104/pp.105.073825; PMID: 16443695
  • Jain A, Cao A, Karthikeyan AS, Baldwin JC, Raghothama KG. Phosphate deficiency suppresses expression of light-regulated psbO and psbP genes encoding extrinsic proteins of oxygen-evolving complex of PSII. Curr Sci 2005; 89:1592 - 6
  • Bongue-Bartelsman M, Phillips DA. Nitrogen stress regulates gene expression of enzymes in the flavonoid biosynthetic pathway of tomato. Plant Physiol Biochem 1995; 33:539 - 46
  • Wang X, Bian Y, Cheng K, Zou H, Sun SS-M, He J-X. A comprehensive differential proteomic study of nitrate deprivation in Arabidopsis reveals complex regulatory networks of plant nitrogen responses. J Proteome Res 2012; 11:2301 - 15; http://dx.doi.org/10.1021/pr2010764; PMID: 22329444
  • Feyissa DN, Løvdal T, Olsen KM, Slimestad R, Lillo C. The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in Arabidopsis rosette stage leaves. Planta 2009; 230:747 - 54; http://dx.doi.org/10.1007/s00425-009-0978-3; PMID: 19621239
  • Peng M, Hudson D, Schofield A, Tsao R, Yang R, Gu H, Bi Y-M, Rothstein SJ. Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene. J Exp Bot 2008; 59:2933 - 44; http://dx.doi.org/10.1093/jxb/ern148; PMID: 18552353
  • Olsen KM, Slimestad R, Lea US, Brede C, Løvdal T, Ruoff P, Verheul M, Lillo C. Temperature and nitrogen effects on regulators and products of the flavonoid pathway: experimental and kinetic model studies. Plant Cell Environ 2009; 32:286 - 99; http://dx.doi.org/10.1111/j.1365-3040.2008.01920.x; PMID: 19054348
  • Olsen KM, Lea US, Slimestad R, Verheul M, Lillo C. Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. J Plant Physiol 2008; 165:1491 - 9; http://dx.doi.org/10.1016/j.jplph.2007.11.005; PMID: 18242769
  • Ruckle ME, DeMarco SM, Larkin RM. Plastid signals remodel light signaling networks and are essential for efficient chloroplast biogenesis in Arabidopsis. Plant Cell 2007; 19:3944 - 60; http://dx.doi.org/10.1105/tpc.107.054312; PMID: 18065688
  • Mayfield JD, Folta KM, Paul A-L, Ferl RJ. The 14-3-3 Proteins μ and υ influence transition to flowering and early phytochrome response. Plant Physiol 2007; 145:1692 - 702; http://dx.doi.org/10.1104/pp.107.108654; PMID: 17951453
  • Ahmad M, Cashmore AR. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 1993; 366:162 - 6; http://dx.doi.org/10.1038/366162a0; PMID: 8232555
  • Guo H, Yang H, Mockler TC, Lin C. Regulation of flowering time by Arabidopsis photoreceptors. Science 1998; 279:1360 - 3; http://dx.doi.org/10.1126/science.279.5355.1360; PMID: 9478898
  • Feinbaum RL, Ausubel FM. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol Cell Biol 1988; 8:1985 - 92; PMID: 3386631
  • Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol 2006; 140:909 - 21; http://dx.doi.org/10.1104/pp.105.075721; PMID: 16415211
  • Sánchez-Calderón L, López-Bucio J, Chacón-López A, Cruz-Ramírez A, Nieto-Jacobo F, Dubrovsky JG, Herrera-Estrella L. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana.. Plant Cell Physiol 2005; 46:174 - 84; http://dx.doi.org/10.1093/pcp/pci011; PMID: 15659445
  • Kurata T, Yamamoto KT. Light-stimulated root elongation in Arabidopsis thaliana. J Plant Physiol 1997; 151:346 - 51; http://dx.doi.org/10.1016/S0176-1617(97)80263-5
  • Shin DH, Cho M-H, Kim T-L, Yoo J, Kim J-I, Han Y-J, Song P-S, Jeon J-S, Bhoo SH, Hahn T-R. A small GTPase activator protein interacts with cytoplasmic phytochromes in regulating root development. J Biol Chem 2010; 285:32151 - 9; http://dx.doi.org/10.1074/jbc.M110.133710; PMID: 20551316
  • Reed JW, Nagpal P, Poole DS, Furuya M, Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 1993; 5:147 - 57; PMID: 8453299
  • Warnasooriya SN, Porter KJ, Montgomery BL. Tissue- and isoform-specific phytochrome regulation of light-dependent anthocyanin accumulation in Arabidopsis thaliana.. Plant Signal Behav 2011; 6:624 - 31; http://dx.doi.org/10.4161/psb.6.5.15084; PMID: 21455024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.