994
Views
17
CrossRef citations to date
0
Altmetric
Research Paper

Association between spoligotype-VNTR types and virulence of Mycobacterium bovis in cattle

, , , , , , , , , , , , & show all
Pages 297-302 | Received 09 Sep 2013, Accepted 13 Nov 2013, Published online: 07 Jan 2014
 

Abstract

Mycobacterium bovis is the causative agent of bovine tuberculosis, a disease that affects approximately 5% of Argentine cattle. The aim of this research was to study if it is possible to infer the degree of virulence of different M. bovis genotypes based on scorified observations of tuberculosis lesions in cattle.

In this study, we performed association analyses between several parameters with tuberculosis lesions: M. bovis genotype, degree of progression of tuberculosis, and animal age. For this purpose, the genotype was determined by spoligotyping and the degree of bovine tuberculosis gross lesion was quantified with a score based on clinical observations (number, size, and location of granulomas along with histopathologic features). This study was performed with naturally infected cattle of slaughterhouses from three provinces in Argentina.

A total of 265 M. bovis isolates were obtained from 378 pathological lesion samples and 192 spoligotyping and VNTR (based on ETR sequences) typing patterns were obtained. SB0140 was the most predominant spoligotype, followed by SB0145. The spoligotype with the highest lesion score was SB0273 (median score of 27 ± 4.46), followed by SB0520 (18 ± 5.8). Furthermore, the most common spoligotype, SB0140, had a median score of 11 ± 0.74. Finally, the spoligotype with the lowest score was SB0145 (8 ± 1.0). ETR typing of SB0140, SB0145, SB0273, and SB0520 did not subdivide the lesion scores in those spoligotypes.

In conclusion, SB0273 and SB0520 were the spoligotypes with the strongest association with hypervirulence and both spoligotypes were only found in Río Cuarto at the south of Córdoba province. Interestingly, there is no other report of any of these spoligotyes in Latin America.

10.4161/viru.27193

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

This work was supported by National Agency of Research Promotion of Argentina Grant PICT 1114. We thank Dr Soledad Barandiaran for her help in VNTR analysis, Valeria Rocha, Pablo Huertas, and Liliana Rodríguez for their excellent technical help, and Dr Julia Sabio y García for her critical reading of this manuscript. K Caimi and A Cataldi are career members of CONICET, Argentina.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.