576
Views
60
CrossRef citations to date
0
Altmetric
Original Articles

Recent Trends in the Application of Carbon Nanotubes–Polymer Composite Modified Electrodes for Biosensors: A Review

&
Pages 210-243 | Received 16 Oct 2007, Accepted 17 Oct 2007, Published online: 11 Feb 2008

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (3)

Monika Poonia, V. Manjuladevi & R. K. Gupta. (2020) Ultrathin films of functionalised single-walled carbon nanotubes: a potential bio-sensing platform. Liquid Crystals 47:8, pages 1204-1213.
Read now
Rajeev Kumar, Moonis Ali Khan & Nazrul Haq. (2014) Application of Carbon Nanotubes in Heavy Metals Remediation. Critical Reviews in Environmental Science and Technology 44:9, pages 1000-1035.
Read now
J. Lara-Romero, J. C. Calva-Yañez, J. López-Tinoco, G. Alonso-Nuñez, S. Jiménez-Sandoval & F. Paraguay-Delgado. (2011) Temperature Effect on the Synthesis of Multi-Walled Carbon Nanotubes by Spray Pyrolysis of Botanical Carbon Feedstocks: Turpentine, α-pinene and β-pinene. Fullerenes, Nanotubes and Carbon Nanostructures 19:6, pages 483-496.
Read now

Articles from other publishers (57)

Claudia Ivone Piñón-Balderrama, Claudia Alejandra Hernández-Escobar, Simón Yobanni Reyes-López, Alain Salvador Conejo-Dávila, Anayansi Estrada-Monje & Erasto Armando Zaragoza-Contreras. (2024) Non-Enzymatic Electrochemical Sensing of Glucose with a Carbon Black/Polyaniline/Silver Nanoparticle Composite. Chemosensors 12:2, pages 26.
Crossref
R. Rajkumar, J. Antony Rajam, P. Karpagavinayagam, M. Kavitha & C. Vedhi. 2024. Novel Nanostructured Materials for Electrochemical Bio-Sensing Applications. Novel Nanostructured Materials for Electrochemical Bio-Sensing Applications 575 595 .
Ali R. Jalalvand, Soheila Mohammadi & Faezeh Majidi. (2023) Fabrication of a novel molecularly imprinted biosensor assisted by higher-order calibration methods and a computer-generated experimental design for determination of thyroglobulin in the presence of thyroxine and triiodothyronine as uncalibrated interference. Chemometrics and Intelligent Laboratory Systems 243, pages 105006.
Crossref
Kabyashree Hazarika, Hiranya Ranjan Thakur & Jiten Chandra Dutta. (2023) Fabrication and characterization of different polymer doped CNT nanocomposites for creatinine detection. Materials Today: Proceedings.
Crossref
Poushali Das, Akanksha Gupta, Moorthy Maruthapandi, Arumugam Saravanan, Seshasai Srinivasan, Amin Reza Rajabzadeh & Aharon Gedanken. 2023. Polymeric Nanocomposite Materials for Sensor Applications. Polymeric Nanocomposite Materials for Sensor Applications 323 342 .
Suman Kumar Ghosh & Narayan Chandra Das. 2023. Polymeric Nanocomposite Materials for Sensor Applications. Polymeric Nanocomposite Materials for Sensor Applications 121 140 .
Shashi Chawla, Prateek Rai & Tanya Garain. 2023. Recent Advances in Metrology. Recent Advances in Metrology 29 40 .
Thi Hong Anh Nguyen, Thao Quynh Ngan Tran, Thi Nhat Thang Nguyen, Thanh Khue Van, Dai-Hung Ngo, Subodh Kumar & Xuan Thang Cao. (2022) Deep eutectic solvent-assisted synthesis of poly(furfuryl alcohol) grafted carbon nanotubes: a metal free electrocatalyst for non-enzymatic glucose detection. New Journal of Chemistry 46:33, pages 15799-15803.
Crossref
Bhushan O. Murjani, Parikshit S. Kadu, Manasi Bansod, Saloni S. Vaidya & Manishkumar D. Yadav. (2022) Carbon nanotubes in biomedical applications: current status, promises, and challenges. Carbon Letters 32:5, pages 1207-1226.
Crossref
Aiwei Jia. (2022) Applications of carbon nanotubes-based electrochemical biosensors. Highlights in Science, Engineering and Technology 3, pages 130-136.
Crossref
Gaveshana A. Sepalage, Hasitha Weerasinghe, Nitish Rai, Noel W. Duffy, Sonia R. Raga, Yvonne Hora, Mei Gao, Doojin Vak, Anthony S. R. Chesman, Udo Bach & Alexandr N. Simonov. (2021) Can Laminated Carbon Challenge Gold? Toward Universal, Scalable, and Low‐Cost Carbon Electrodes for Perovskite Solar Cells. Advanced Materials Technologies 7:6.
Crossref
Peng Yan, Kai Zhang & Yaqi Peng. (2022) Study of Fe2O3-Al2O3 catalyst reduction parameters and conditions for catalytic methane decomposition. Chemical Engineering Science 250, pages 117410.
Crossref
Niloofar Eslahi, Roya Lotfi, Nooshin Zandi, Mozhdeh Mazaheri, Foad Soleimani & Abdolreza Simchi. 2022. Innovations in Graphene-Based Polymer Composites. Innovations in Graphene-Based Polymer Composites 199 245 .
David C. Ferrier & Kevin C. Honeychurch. (2021) Carbon Nanotube (CNT)-Based Biosensors. Biosensors 11:12, pages 486.
Crossref
Niranjan Karak. 2021. Sustainable Epoxy Thermosets and Nanocomposites. Sustainable Epoxy Thermosets and Nanocomposites 169 200 .
N. Gopal, S. Kumar & R. Sahney. (2021) Towards the development of flexible carbon nanotube–parafilm nanocomposites and their application as bioelectrodes. RSC Advances 11:54, pages 34193-34205.
Crossref
Partha Pratim Das, Vijay Chaudhary, Furkan Ahmad & Ankit Manral. (2021) Effect of nanotoxicity and enhancement in performance of polymer composites using nanofillers: A state‐of‐the‐art review. Polymer Composites 42:5, pages 2152-2170.
Crossref
Mitradip Bhattacharjee & Dipankar Bandyopadhyay. 2021. Environmental Nanotechnology Volume 5. Environmental Nanotechnology Volume 5 85 118 .
Yu-Hsun Nien, Tzu-Yu Su, Chih-Sung Ho, Jung-Chuan Chou, Chih-Hsien Lai, Po-Yu Kuo, Zhi-Xuan Kang, Zhe-Xin Dong, Tsu-Yang Lai & Chu-Hsuan Wang. (2020) The Analysis of Potentiometric Flexible Arrayed Urea Biosensor Modified by Graphene Oxide and γ-Fe 2 O 3 Nanoparticles . IEEE Transactions on Electron Devices 67:11, pages 5104-5110.
Crossref
Deepak G. Prajapati & Balasubramanian Kandasubramanian. (2019) Progress in the Development of Intrinsically Conducting Polymer Composites as Biosensors. Macromolecular Chemistry and Physics 220:10.
Crossref
Nuno F. Santos, Sónia O. Pereira, António J. S. Fernandes, Thiago L. Vasconcelos, Chung M. FungBráulio S. Archanjo, Carlos A. Achete, Sofia R. TeixeiraRui F. Silva & Florinda M. Costa. (2019) Physical Structure and Electrochemical Response of Diamond–Graphite Nanoplatelets: From CVD Synthesis to Label-Free Biosensors. ACS Applied Materials & Interfaces 11:8, pages 8470-8482.
Crossref
Joseph Christakiran Moses, Ankit Gangrade & Biman B. Mandal. 2019. Nanomaterials and Polymer Nanocomposites. Nanomaterials and Polymer Nanocomposites 145 175 .
R.B. Rakhi. 2019. Nanocarbon and its Composites. Nanocarbon and its Composites 489 520 .
Evgeny Katz. 2018. Signal‐Switchable Electrochemical Systems. Signal‐Switchable Electrochemical Systems 177 201 .
Grasielli C. de Oliveira, Lucas C. Pereira, Ana L. Silva, Felipe S. Semaan, Marilza Castilho & Eduardo A. Ponzio. (2018) Acrylonitrile-butadiene-styrene (ABS) composite electrode for the simultaneous determination of vitamins B2 and B6 in pharmaceutical samples. Journal of Solid State Electrochemistry 22:5, pages 1607-1619.
Crossref
Evgeny Katz, Víctor M. Fernández & Marcos Pita. (2015) Switchable Bioelectrocatalysis Controlled by pH Changes. Electroanalysis 27:9, pages 2063-2073.
Crossref
Ning Yang, Xianping Chen, Tianling Ren, Ping Zhang & Daoguo Yang. (2015) Carbon nanotube based biosensors. Sensors and Actuators B: Chemical 207, pages 690-715.
Crossref
Naga S. Korivi. 2014. Polymer Nanotube Nanocomposites. Polymer Nanotube Nanocomposites 211 237 .
Kun Tian, Megan Prestgard & Ashutosh Tiwari. (2014) A review of recent advances in nonenzymatic glucose sensors. Materials Science and Engineering: C 41, pages 100-118.
Crossref
Sedigheh Hashemnia & Mahbubeh Eskanari. (2014) Preparation and Electrochemical Characterization of an Enzyme Electrode Based on Catalase Immobilized onto a Multiwall Carbon Nanotube‐Thionine Film. Journal of the Chinese Chemical Society 61:8, pages 903-909.
Crossref
M. Boujtita. 2014. Nanosensors for Chemical and Biological Applications. Nanosensors for Chemical and Biological Applications 3 27 .
Eduard G Rakov. (2013) Carbon nanotubes in new materials. Russian Chemical Reviews 82:1, pages 27-47.
Crossref
Katherine Lawrence, Geoffrey W. Nelson, John S. Foord, Mónica Felipe-Sotelo, Nick D. M. Evans, John M. Mitchels, Tony D. James, Fengjie Xia & Frank Marken. (2013) “Hydrothermal wrapping” with poly(4-vinylpyridine) introduces functionality: pH-sensitive core–shell carbon nanomaterials. Journal of Materials Chemistry A 1:14, pages 4559.
Crossref
Kuo-Chiang Lin, Chuen-Pon Hong & Shen-Ming Chen. (2012) Electrocatalytic Oxidation of Alcohols, Sulfides and Hydrogen Peroxide Based on Hybrid Composite of Ruthenium Hexacyanoferrate and Multi-Walled Carbon Nanotubes. International Journal of Electrochemical Science 7:11, pages 11426-11443.
Crossref
Komeil Nasouri, Ahmad Mousavi Shoushtari, Ali Kaflou, Hossein Bahrambeygi & Amir Rabbi. (2012) Single‐wall carbon nanotubes dispersion behavior and its effects on the morphological and mechanical properties of the electrospun nanofibers. Polymer Composites 33:11, pages 1951-1959.
Crossref
L. Jiang, S. Islam & N.S. Korivi. (2012) Micro-patterning of nanocomposites of polymer and carbon nanotubes. Microelectronic Engineering 93, pages 10-14.
Crossref
N. B. Cherkasov, S. B. Savilov, A. N. Pryakhin, A. S. Ivanov & V. V. Lunin. (2012) Kinetic characteristics of the synthesis of multiwall carbon nanotubes by aerosol pyrolysis of a ferrocene solution in benzene. Russian Journal of Physical Chemistry A 86:3, pages 424-428.
Crossref
Vinicius Romero Gonçales, Elaine Yoshiko Matsubara, José Maurício Rosolen & Susana Inés Córdoba de Torresi. (2011) Micro/nanostructured carbon composite modified with a hybrid redox mediator and enzymes as a glucose biosensor. Carbon 49:9, pages 3039-3047.
Crossref
Xiongce Zhao. (2011) Self-Assembly of DNA Segments on Graphene and Carbon Nanotube Arrays in Aqueous Solution: A Molecular Simulation Study. The Journal of Physical Chemistry C 115:14, pages 6181-6189.
Crossref
Sedigheh Hashemnia, Shima Khayatzadeh, Ali Akbar Moosavi-Movahedi & Hedayatollah Ghourchian. (2011) Direct Electrochemistry of Catalase in Multiwall Carbon Nanotube/dodecyl Trimethylammonium Bromide Film Covered With a Layer of Nafion on a Glassy Carbon Electrode. International Journal of Electrochemical Science 6:3, pages 581-595.
Crossref
Ravindra P. Singh. (2011) Prospects of Nanobiomaterials for Biosensing. International Journal of Electrochemistry 2011, pages 1-30.
Crossref
JongTae Yoo, Hiroaki Ozawa, Tsuyohiko Fujigaya & Naotoshi Nakashima. (2011) Evaluation of affinity of molecules for carbon nanotubes. Nanoscale 3:6, pages 2517.
Crossref
J.F. Friedrich, S. Wettmarshausen, S. Hanelt, R. Mach, R. Mix, E.B. Zeynalov & A. Meyer-Plath. (2010) Plasma-chemical bromination of graphitic materials and its use for subsequent functionalization and grafting of organic molecules. Carbon 48:13, pages 3884-3894.
Crossref
Yuyong Zhang, Ruo Yuan, Yaqin Chai, Yun Xiang, Chenglin Hong & Xiaoqi Ran. (2010) An amperometric hydrogen peroxide biosensor based on the immobilization of HRP on multi-walled carbon nanotubes/electro-copolymerized nano-Pt-poly(neutral red) composite membrane. Biochemical Engineering Journal 51:3, pages 102-109.
Crossref
Mariana Emilia Ghica & Christopher M. A. Brett. (2010) The influence of carbon nanotubes and polyazine redox mediators on the performance of amperometric enzyme biosensors. Microchimica Acta 170:3-4, pages 257-265.
Crossref
Anees A. Ansari, Mansour Alhoshan, Mohamad S. Alsalhi & Abdull S. Aldwayyan. (2010) Prospects of Nanotechnology in Clinical Immunodiagnostics. Sensors 10:7, pages 6535-6581.
Crossref
Omowunmi A. Sadik, Samuel K. Mwilu & Austin Aluoch. (2010) Smart electrochemical biosensors: From advanced materials to ultrasensitive devices. Electrochimica Acta 55:14, pages 4287-4295.
Crossref
Khalid Abu-Salah, Salman A. Alrokyan, Muhammad Naziruddin Khan & Anees Ahmad Ansari. (2010) Nanomaterials as Analytical Tools for Genosensors. Sensors 10:1, pages 963-993.
Crossref
Christos Boutopoulos, Christos Pandis, Konstantinos Giannakopoulos, Polycarpos Pissis & Ioanna Zergioti. (2010) Polymer/carbon nanotube composite patterns via laser induced forward transfer. Applied Physics Letters 96:4.
Crossref
Maria Guix, Briza Pérez-López, Melike Sahin, Mònica Roldán, Adriano Ambrosi & Arben Merkoçi. (2010) Structural characterization by confocal laser scanning microscopy and electrochemical study of multi-walled carbon nanotube tyrosinase matrix for phenol detection. The Analyst 135:8, pages 1918.
Crossref
Yuane Wang, Dawei Pan, Xinming Li & Wei Qin. (2010) Fabrication of Bismuth/Multi‐walled Carbon Nanotube Composite Modified Glassy Carbon Electrode for Determination of Cobalt. Chinese Journal of Chemistry 27:12, pages 2385-2391.
Crossref
César Fernández-Sánchez, Eva Pellicer, Jahir Orozco, Cecilia Jiménez-Jorquera, Laura M Lechuga & Ernest Mendoza. (2009) Plasma-activated multi-walled carbon nanotube–polystyrene composite substrates for biosensing. Nanotechnology 20:33, pages 335501.
Crossref
Periasamy Arun Prakash, Umasankar Yogeswaran & Shen-Ming Chen. (2009) Direct electrochemistry of catalase at multiwalled carbon nanotubes-nafion in presence of needle shaped DDAB for H2O2 sensor. Talanta 78:4-5, pages 1414-1421.
Crossref
Omowunmi A. Sadik, Austin O. Aluoch & Ailing Zhou. (2009) Status of biomolecular recognition using electrochemical techniques. Biosensors and Bioelectronics 24:9, pages 2749-2765.
Crossref
Yogeswaran Umasankar, Jan-Wei Shie & Shen-Ming Chen. (2009) Electrocatalytic Activity of Oxygen and Hydrogen Peroxide Reduction at Poly(iron tetra(o-aminophenyl) porphyrin) Coated Multiwalled Carbon Nanotube Composite Film. Journal of The Electrochemical Society 156:12, pages K238.
Crossref
O. A. Sadik, A. L. Zhou, S. Kikandi, N. Du, Q. Wang & K. Varner. (2009) Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials. Journal of Environmental Monitoring 11:10, pages 1782.
Crossref
Marcela C. Rodríguez, José Sandoval, Laura Galicia, Silvia Gutiérrez & Gustavo A. Rivas. (2008) Highly selective determination of uric acid in the presence of ascorbic acid at glassy carbon electrodes modified with carbon nanotubes dispersed in polylysine. Sensors and Actuators B: Chemical 134:2, pages 559-565.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.