576
Views
60
CrossRef citations to date
0
Altmetric
Original Articles

Recent Trends in the Application of Carbon Nanotubes–Polymer Composite Modified Electrodes for Biosensors: A Review

&
Pages 210-243 | Received 16 Oct 2007, Accepted 17 Oct 2007, Published online: 11 Feb 2008

References

  • Ago , H. , Murata , K. , Yumura , M. , Yotani , J. and Uemura , S. 2003 . Ink‐jet printing of nanoparticle catalyst for site‐selective carbon nanotube growth . Appl. Phys. Lett. , 82 : 811 – 813 .
  • Ajayan , P. M. and Iijima , S. 1992 . Smallest carbon nanotube . Nature , 358 : 23 – 23 .
  • Ajayan , P. M. , Lambert , J. M. , Bernier , P. , Barbedette , L. , Colliex , C. and Planeix , J. M. 1993 . Growth morphologies during cobalt‐catalyzed single‐shell carbon nanotube synthesis . Chem. Phys. Lett. , 215 : 509 – 517 .
  • Ali , S. R. , Ma , Y. , Parajuli , R. R. , Balogun , Y. , Lai , W. Y.C. and He , H. 2007 . A nonoxidative sensor based on a self‐doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine . Anal. Chem. , 79 : 2583 – 2587 .
  • Baird , T. , Frayer , J. R. and Grant , B. 1971 . Structure of fibrous carbon . Nature , 233 : 329 – 330 .
  • Balasubramanian , K. and Burghard , M. 2006 . Biosensors based on carbon nanotubes . Anal. Bioanal. Chem. , 385 : 452 – 468 .
  • Bandow , S. , Asaka , S. , Saito , Y. , Rao , A. M. , Grigorian , L. , Richter , E. and Eklund , P. C. 1998 . Effect of the growth temperature on the diameter distribution and chirality of single‐wall carbon nanotubes . Phys. Rev. Lett. , 80 : 3779 – 3782 .
  • Bavastrello , V. , Carrara , S. , Ram , M. K. and Nicolini , C. 2004 . Optical and electrochemical properties of poly(o‐toluidine) multiwalled carbon nanotubes composite Langmuir‐Schaefer films . Langmuir , 20 : 969 – 973 .
  • Bethund , D. S. , Kiang , C. H. , de Vries , M. S. , Gorman , G. , Savoy , R. , Vazquez , J. and Beyers , R. 1993 . Cobalt‐catalyzed growth of carbon nanotubes with single‐atomic‐layer walls . Nature , 363 : 605 – 607 .
  • Biercuk , M. J. , Llaguno , M. C. , Radosavljevic , M. , Hyun , J. K. , Johnson , A. T. and Fischer , J. E. 2002 . Carbon nanotube composites for thermal management . Appl. Phys. Lett. , 80 : 2767 – 2769 .
  • Blanchet , G. B. , Fincher , C. R. and Gao , F. 2003 . Polyaniline nanotube composites: a high‐resolution printable conductor . Appl. Phys. Lett. , 82 : 1290 – 1292 .
  • Bolshakov , A. P. , Uglov , S. A. , Saveliev , A. V. , Konov , V. I. , Gorbunov , A. A. , Pompe , W. and Graff , A. 2002 . A novel CW laser‐powder method of carbon single‐wall nanotubes production . Diam. Rel. Mater. , 11 : 927 – 930 .
  • Braidy , N. , El Khakani , M. A. and Botton , G. A. 2002 . Single‐wall carbon nanotubes synthesis by means of UV laser vaporization . Chem. Phys. Lett. , 354 : 88 – 92 .
  • Breuer , O. and Sundararaj , U. 2004 . Big returns from small fibers: a review of polymer/carbon nanotube composites . Poly. Comp. , 25 : 630 – 645 .
  • Cadek , M. , Coleman , J. N. , Barron , V. , Hedicke , K. and Blau , W. J. 2002 . Morphological and mechanical properties of carbon‐nanotube‐reinforced semicrystalline and amorphous polymer composites . Appl. Phys. Lett. , 81 : 5123 – 5125 .
  • Chen , J. , Hamon , M. A. , Hu , H. , Chen , Y. , Rao , A. M. and Eklund , P. C. 1998 . Solution properties of single‐walled carbon nanotubes . Science , 282 : 95 – 98 .
  • Chen , J. , Liu , Y. , Minett , A. I. , Lynam , C. , Wang , J. and Wallace , G. G. 2007 . Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium‐ion battery . Chem. Mater. , 19 : 3595 – 3597 .
  • Chen , J. , Rao , A. M. , Lyuksyutov , S. , Itkis , M. E. , Smalley , R. E. and Haddon , R. C. 2001 . Dissolution of full‐length single‐walled carbon nanotubes . J. Phys. Chem. B , 105 : 2525 – 2528 .
  • Chen , R. J. , Zhang , Y. , Wang , D. and Dai , H. 2001 . Noncovalent sidewall functionalization of single‐walled carbon nanotubes for protein immobilization . J. Am. Chem. Soc. , 123 : 3838 – 3839 .
  • Chen , Y. , Conway , M. J. and Fitzgerald , J. D. 2003 . Carbon nanotubes formed in graphite after mechanical grinding and thermal annealing . Appl. Phys. A , 76 : 633 – 636 .
  • Cheng , G. and Guo , T. 2002 . Surface segregation in Ni/Co bimetallic nanoparticles produced in single‐walled carbon nanotube synthesis . J. Phys. Chem. B , 106 : 5833 – 5839 .
  • Cheung , C. L. , Kurtz , A. , Park , H. and Lieber , C. M. 2002 . Diametercontrolled synthesis of carbon nanotubes . J. Phys. Chem. B , 106 : 2429 – 2433 .
  • Chiang , I. W. , Brinson , B. E. , Huang , A. Y. , Willis , P. A. , Bronikowaki , M. J. , Margrave , J. L. , Smalley , R. E. and Hauge , R. H.J. 2001 . Purification and characterization of single‐wall carbon nanotubes (SWNTs) obtained from the gas–phase decomposition of CO (HiPco Process) . Phys. Chem. B , 105 : 8297 – 8301 .
  • Chun , K. Y. , Choi , S. K. , Kang , H. J. , Park , C. Y. and Lee , C. J. 2006 . Highly dispersed multiwalled carbon nanotubes in ethanol using potassium doping . Carbon , 44 : 1491 – 1495 .
  • Coleman , J. N. , Blau , W. J. , Dalton , A. B. , Muñoz , E. , Collins , S. , Kim , B. G. , Raazal , J. , Selvidge , M. , Vieiro , G. and Baughman , R. H. 2003 . Improving the mechanical properties of single‐walled carbon nanotube sheets by intercalation of polymeric adhesives . Appl. Phys. Lett. , 82 : 1682 – 1684 .
  • Cosnier , S. 2003 . Biosensors based on electropolymerized films: new trends . Anal. Bioanal. Chem. , 377 : 507 – 520 .
  • Curran , S. A. , Ajayan , P. M. , Blau , W. J. , Carroll , D. L. , Coleman , J. N. , Dalton , A. B. , Davey , A. P. , Drury , A. , McCarthy , B. , Maier , S. and Strevens , A. 1998 . A composite from poly(m‐phenylenevinylene‐co‐2,5‐dioctoxy‐p‐phenylenevinylene) and carbon nanotubes: a novel material for molecular optoelectronics . Adv. Mater. , 10 : 1091 – 1093 .
  • Dai , G. P. , Liu , C. , Liu , M. , Wang , M. Z. and Cheng , H. M. 2002 . Electrochemical hydrogen storage behavior of ropes of aligned single‐walled carbon nanotubes . Nano Lett. , 2 : 503 – 506 .
  • Dai , L. , Patil , A. , Gong , X. , Guo , Z. , Liu , L. , Liu , Y. and Zhu , D. 2003 . Aligned nanotubes . Chem. Phys. Chem. , 4 : 1150 – 1169 .
  • Day , T. M. , Wilson , N. R. and Macpherson , J. V. 2004 . Electrochemical and conductivity measurements of single‐wall carbon nanotube network electrodes . J. Am. Chem. Soc. , 126 : 16724 – 16725 .
  • Diener , M. D. , Nichelson , N. and Alford , J. M. 2000 . Synthesis of singlewalled carbon nanotubes in flames . J. Phys. Chem. B , 104 : 9615 – 9620 .
  • Durjardin , E. , Ebbesen , T. W. , Krishana , A. and Treacy , M. M.J. 1998 . Purification of single‐shell nanotubes . Adv. Mater. , 10 : 611 – 613 .
  • Ebbesen , T. W. 1994 . Carbon nanotubes . Ann. Rev. Mater. Sci. , 24 : 235 – 264 .
  • Ebbesen , T. W. and Ajayan , P. M. 1992 . Large‐scale synthesis of carbon nanotubes . Nature , 358 : 220 – 222 .
  • Emmenegger , C. , Bonard , J. M. , Mauron , P. , Sudan , P. , Lepora , A. , Grobety , B. , Züttel , A. and Schlapbach , L. 2003 . Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism . Carbon , 41 : 539 – 547 .
  • Emmenegger , Ch. , Mauron , P. , Züttel , A. , Nützenadel , Ch. , Schneuwly , A. , Gallay , R. and Schlapbach , L. 2000 . Carbon nanotube synthesized on metallic substrates . Appl. Surf. Sci. , 162–163 : 452 – 456 .
  • Fang , H. T. , Liu , C. G. , Liu , C. , Li , F. , Liu , M. and Cheng , H. M. 2004 . Purification of single‐wall carbon nanotubes by electrochemical oxidation . Chem. Mater. , 16 : 5744 – 5750 .
  • Gajendran , P. and Saraswathi , R. 2007 . Enhanced electrochemical growth and redox characteristics of poly(o‐phenylenediamine) on a carbon nanotube modified glassy carbon electrode and its application in the electrocatalytic reduction of oxygen . J. Phys. Chem. C , 111 : 11320 – 11328 .
  • Grobert , N. , Terrones , M. , Trasobares , S. , Kordatos , K. , Terrones , H. , Olivarez , J. , Zhang , J. P. , Redlich , Ph. , Hsu , W. K. , Reeves , C. L. , Wallis , D. J. , Zhu , Y. Q. , Hare , J. P. , Pidduck , A. J. , Kroto , H. W. and Walton , D. R.M. 2000 . A novel route to aligned nanotubes and nanofibres using laser‐patterned catalytic substrates . Appl. Phys. A , 70 : 175 – 183 .
  • Guo , T. , Nikolaev , P. , Rinzler , A. G. , Tománek , D. , Colbert , D. T. and Smalley , R. E. 1995 . Self‐assembly of tubular fullerenes . J. Phys. Chem. , 99 : 10694 – 10697 .
  • Guo , T. , Nikolaev , P. , Thess , A. , Colbert , D. T. and Smalley , R. E. 1995 . Catalytic growth of single‐walled nanotubes by laser vaporization . Chem. Phys. Lett. , 243 : 49 – 54 .
  • He , P. and Bayachou , M. 2005 . Layer‐by‐layer fabrication and characterization of DNA‐wrapped single‐walled carbon nanotube particles . Langmuir , 21 : 6086 – 6092 .
  • Hone , J. , Llaguno , M. C. , Bierck , M. J. , Johnson , A. T. , Batlogg , B. , Benes , Z. and Fischer , J. E. 2002 . Thermal properties of carbon nanotubes and nanotube‐based materials . Appl. Phys. A , 74 : 339 – 343 .
  • Hsu , W. K. , Hare , J. P. , Terrones , M. , Kroto , H. W. , Walton , D. R.M. and Harris , P. J.H. 1995 . Condensed‐phase nanotubes . Nature , 377 : 687 – 687 .
  • Huang , L. , Wind , S. J. and O'Brien , S. P. 2003 . Controlled growth of single walled carbon nanotubes from an ordered mesoporous silica template . Nano Lett. , 3 : 299 – 303 .
  • Huang , S. and Mau , A. H.W. 2003 . Aligned carbon nanotubes patterned photolithographically by silver . Appl. Phys. Lett. , 82 : 796 – 798 .
  • Huang , S. , Mau , A. H.W. , Turney , T. W. , White , P. A. and Dai , L. 2000 . Patterned growth of well‐aligned carbon nanotubes: a softlithographic approach . J. Phys. Chem. B , 104 : 2193 – 2196 .
  • Huang , Z. P. , Carnahan , D. L. , Rybczynski , J. , Giersig , M. , Sennett , M. , Wang , D. Z. , Wen , J. G. , Kempa , K. and Ren , Z. F. 2003 . Growth of large periodic arrays of carbon nanotubes . Appl. Phys. Lett. , 82 : 460 – 462 .
  • Hughes , M. , Chen , G. Z. , Shaffer , M. S.P. , Fray , D. J. and Windle , A. H. 2002 . Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole . Chem. Mater. , 14 : 1610 – 1613 .
  • Iijima , S. 1991 . Helical microtubules of graphitic carbon . Nature , 354 : 56 – 58 .
  • Iijima , S. and Ichihashi , T. 1993 . Single‐shell carbon nanotubes of 1‐nm diameter . Nature , 363 : 603 – 605 .
  • Ito , T. , Sun , L. and Crooks , R. M. 2003 . Electrochemical etching of individual multiwall carbon nanotubes . Electrochem. Solid State Lett. , 6 : C4 – C7 .
  • Iwasaki , T. , Motoi , T. and Den , T. 1999 . Multiwalled carbon nanotubes growth in anodic alumina nanoholes . Appl. Phys. Lett. , 75 : 2044 – 2046 .
  • Joshi , P. P. , Merchant , S. A. , Wang , Y. and Schmidtke , D. W. 2005 . Amperometric biosensors based on redox polymer‐carbon nanotube‐enzyme composites . Anal. Chem. , 77 : 3183 – 3188 .
  • Journet , C. , Maser , W. K. , Bernier , P. , Loiseau , A. , Lamy de la Chapelle , M. , Lefrant , S. , Deniard , P. , Lee , R. and Fischer , J. E. 1997 . Large‐scale production of single‐walled carbon nanotubes by the electric‐arc technique . Nature , 388 : 756 – 758 .
  • Kearns , J. C. and Shambaugh , R. L. 2002 . Polypropylene fibers reinforced with carbon nanotubes . J. Appl. Polym. Sci. , 86 : 2079 – 2084 .
  • Kiang , C. H. , Goddard , W. A. III , Beyers , R. and Bethune , D. S. 1995 . Carbon nanotubes with single‐layer walls . Carbon , 33 : 903 – 914 .
  • Kiang , C. H. , Goddard , W. A. III , Beyers , R. , Salem , J. R. and Bethune , D. S. 1994 . Catalytic synthesis of single‐layer carbon nanotubes with a wide range of diameters . J. Phys. Chem. , 98 : 6612 – 6618 .
  • Kilbride , B. E. , Coleman , J. N. , Fraysse , J. , Fournet , P. , Cadek , M. , Drury , A. , Hutzler , S. , Roth , S. and Blau , W. J. 2002 . Experimental observation of scaling laws for alternating current and direct current conductivity in polymer‐carbon nanotube composite thin films . J. Appl. Phys. , 92 : 4024 – 4030 .
  • Kingston , C. T. and Simard , B. 2003 . Fabrication of carbon nanotubes . Anal. Lett. , 36 : 3119 – 3145 .
  • Kratschmer , W. , Lamb , L. O. , Fostiropoulos , K. and Huffman , D. R. 1990 . Solid C60: a new form of carbon . Nature , 347 : 354 – 358 .
  • Kroto , H. W. , Heath , J. R. , O'Brien , S. C. , Curl , R. F. and Smalley , R. E. 1985 . C60: buckminsterfullerene . Nature , 318 : 162 – 163 .
  • Lambert , J. M. , Ajayan , P. M. and Bernier , P. 1995 . Synthesis of single and multishell carbon nanotubes . Synthetic Metals , 70 : 1475 – 1476 .
  • Lambert , J. M. , Ahayan , P. M. , Bernier , P. , Planiex , J. M. , Brotons , V. , Coq , B. and Castaing , J. 1994 . Improving conditions toward isolating single‐shell carbon nanotubes . Chem. Phys. Lett. , 226 : 364 – 371 .
  • Laplaze , D. , Bernier , P. , Maser , W. K. , Flamant , G. , Guillard , T. and Loiseau , A. 1998 . Carbon nanotubes: the solar approach . Carbon , 36 : 685 – 688 .
  • Lebedkin , S. , Schweiss , P. , Renker , B. , Malik , S. , Hennrich , F. , Neumaier , M. , Stoermer , C. and Kappes , M. M. 2002 . Single‐wall carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization . Carbon , 40 : 417 – 423 .
  • Lee , C. J. and Park , J. 2000 . Growth model of bamboo‐shaped carbon nanotubes by thermal chemical vapor deposition . Appl. Phys. Lett. , 77 : 3397 – 3399 .
  • Lee , K. H. , Cho , J. M. and Sigmund , W. 2003 . Control of growth orientation for carbon nanotubes . Appl. Phys. Lett. , 82 : 448 – 450 .
  • Li , J. , Cassell , A. , Delzeit , L. , Han , J. and Meyyappan , M. 2002 . Novel three‐dimensional electrodes: electrochemical properties of carbon nanotube ensembles . J. Phys. Chem. B , 106 : 9299 – 9305 .
  • Li , Q. , Zhang , J. , Yan , H. , He , M. and Liu , Z. 2004 . Thionine‐mediated chemistry of carbon nanotubes . Carbon , 42 : 287 – 291 .
  • Li , S. , He , P. , Dong , J. , Guo , Z. and Dai , L. 2005 . DNA‐directed self‐assembling of carbon nanotubes . J. Am. Chem. Soc. , 127 : 14 – 15 .
  • Li , S. , Liu , H. , Li , H. , Zhai , J. , Jiang , L. and Zhu , D. 2003 . The controlled pattern growth of aligned carbon nanotubes . Synthetic Met. , 135–136 : 815 – 816 .
  • Lin , Y. , Lu , F. , Tu , Y. and Ren , Z. 2004 . Glucose biosensors based on carbon nanotube nanoelectrode ensembles . Nano Lett. , 4 : 191 – 195 .
  • Liu , J. , Shao , M. , Tang , Q. , Zhang , S. and Qian , Y. 2003 . Synthesis of carbon nanotubes and nanobelts through a medial‐reduction method . J. Phys. Chem. B , 107 : 6329 – 6332 .
  • Lozano , K. and Barrera , E. V. 2001 . Nanofiber‐reinforced thermoplastic composites. I. thermoanalytical and mechanical analyses . J. Appl. Polym. Sci. , 79 : 125 – 133 .
  • Malinauskas , A. , Malinauskiene , J. and Ramanavi˘cius , A. 2005 . Conducting polymer‐based nanostructurized materials: electrochemical aspects . Nanotechnology , 16 : R51 – R62 .
  • Martı´nez , M. T. , Callejas , M. A. , Benito , A. M. , Cochet , M. , Seeger , T. , Ansón , A. , Schreiber , J. , Gordon , C. , Marhic , C. , Chauvet , O. , Fierro , J. L.G. and Maser , W. K. 2003 . Sensitivity of single wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalisation . Carbon , 41 : 2247 – 2256 .
  • Maser , W. K. , Muñoz , E. , Benito , A. M. , Martı´nez , M. T. , de la Fuente , G. F. , Maniette , Y. , Anglaret , E. and Sauvajol , J.‐L. 1998 . Production of high‐density single‐walled nanotube material by a simple laser‐ablation method . Chem. Phys. Lett. , 292 : 587 – 593 .
  • McCarthy , B. , Coleman , J. N. , Czerw , R. , Dalton , A. B. , in het Panhuis , M. , Maiti , A. , Drury , A. , Bernier , P. , Nagy , J. B. , Lahr , B. , Byrne , H. J. , Carroll , D. L. and Blau , W. J. 2002 . A microscopic and spectroscopic study of interactions between carbon nanotubes and a conjugated polymer . J. Phys. Chem. B , 106 : 2210 – 2216 .
  • Moon , J. M. , An , K. H. , Lee , Y. H. , Park , Y. S. , Bae , D. J. and Park , G. S.J. 2001 . High‐yield purification process of singlewalled carbon nanotubes . Phys. Chem. B , 105 : 5677 – 5681 .
  • Mukhopadhyay , K. and Mathur , G. N. 2002 . Bimetallic catalyst for synthesizing quasi‐aligned well graphitized multiwalled carbon nanotube bundles in large scale by catalytic chemical vapor deposition method . J. Nanosci. Nanotech. , 2 : 197 – 201 .
  • Muñoz , E. , Maser , W. K. , Benito , A. M. , Martı´nez , M. T. , de la Fuente , G. F. , Maniette , Y. , Righi , A. , Anglaret , E. and Sauvajol , J. L. 2000 . Gas and pressure effects on the production of single‐walled carbon nanotubes by laser ablation . Carbon , 38 : 1445 – 1451 .
  • Muñoz , E. , Maser , W. K. , Benito , A. M. , Martínez , M. T. , de la Fuente , G. F. , Righi , A. , Anglaret , E. and Sauvajol , J. L. 2001 . The influence of the target composition in the structural characteristics of singlewalled carbon nanotubes produced by laser ablation . Synthetic Met. , 121 : 1193 – 1194 .
  • Nerushev , O. A. , Dittmar , S. , Morjan , R. E. , Rohmund , F. and Campbell , E. E.B. 2003 . Particle size dependence and model for iron catalyzed growth of carbon nanotubes by thermal chemical vapor deposition . J. Appl. Phys. , 93 : 4185 – 4190 .
  • Ng , H. T. , Foo , M. L. , Fang , A. , Li , J. , Xu , G. , Jaenicke , S. , Chan , L. and Li , S. F.Y. 2002 . Soft‐lithography‐mediated chemical vapor deposition of architectured carbon nanotube networks on elastomeric polymer . Langmuir , 18 : 1 – 5 .
  • Nikolaev , P. , Bronikowski , M. J. , Bradley , R. K. , Rohmund , F. , Colbert , D. T. , Smith , K. A. and Smalley , R. E. 1999 . Gas‐phase catalytic growth of single‐walled carbon nanotubes from carbon monoxide . Chem. Phys. Lett. , 313 : 91 – 97 .
  • Nishide , D. , Kataura , H. , Suzuki , S. , Tsukagoshi , K. , Aoyagi , Y. and Achiba , Y. 2003 . High‐yield production of single‐wall carbon nanotubes in nitrogen gas . Chem. Phys. Lett. , 372 : 45 – 50 .
  • O'Loughlin , J. L. , Kiang , C. H. , Wallace , C. H. , Reynolds , T. K. , Rao , L. and Kaner , R. B. 2001 . Rapid synthesis of carbon nanotubes by solid‐state metathesis reactions . J. Phys. Chem. B , 105 : 1921 – 1924 .
  • Punbusayakul , N. , Talapatra , S. , Ci , L. , Surareungchai , W. and Ajayan , P. M. 2007 . Double‐walled carbon nanotube electrodes for electrochemical sensing . Electrochem. and Solid‐State Lett. , 10 : F13 – F17 .
  • Qian , L. and Yang , X. 2006 . Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor . Talanta , 68 : 721 – 727 .
  • Qu , F. , Yang , M. , Jiang , J. , Shen , G. and Yu , R. 2005 . Amperometric biosensor for choline based on layer‐by‐layer assembled functionalized carbon nanotube and polyaniline multilayer film . Anal. Biochem. , 344 : 108 – 114 .
  • Rinzler , A. G. , Liu , J. , Dai , H. , Nikolaev , P. , Huffman , C. B. , Rodrı´guez‐Macı´as , F. J. , Boul , P. J. , Lu , A. H. , Heymann , D. , Colbert , D. T. , Lee , R. S. , Fischer , J. E. , Rao , A. M. , Eklund , P. C. and Smalley , R. E. 1998 . Large‐scale purification of single‐wall carbon nanotubes: process, product, and characterization . Appl. Phys. A , 67 : 29 – 37 .
  • Robertson , D. 1970 . Carbon formation from methane pyrolysis over some transition metal surfaces—I. Nature and properties of the carbons formed . Carbon , 8 : 365 – 374 .
  • Ryzhkov , V. A. 2002 . Carbon nanotube production by a cracking of liquid hydrocarbons . Physica B , 323 : 324 – 326 .
  • Safadi , B. , Andrews , R. and Grulke , E. A. 2002 . Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films . J. Appl. Polym. Sci. , 84 : 2660 – 2669 .
  • Seraphin , S. and Zhou , D. 1994 . Single‐walled carbon nanotubes produced at high yield by mixed catalysts . Appl. Phys. Lett. , 64
  • Shi , Z. J. , Lian , Y. F. , Liao , F. H. , Zhou , X. H. , Gu , Z. N. , Zhang , Y. G. and Iijima , S. 1999 . Purification of single‐wall carbon nanotubes . Solid State Commun. , 112 : 35 – 37 .
  • Smiljanic , O. , Dellero , T. , Serventi , A. , Lebrun , G. , Stansfield , B. L. , Dodelet , J. P. , Trudeau , M. and Désilets , S. 2001 . Growth of carbon nanotubes on Ohmically heated carbon paper . Chem. Phys. Lett. , 342 : 503 – 509 .
  • Steuerman , D. W. , Star , A. , Narizzano , R. , Choi , H. , Ries , R. S. , Nicolini , C. , Stoddart , J. F. and Heath , J. R. 2002 . Interactions between conjugated polymers and single‐walled carbon nanotubes . J. Phys. Chem. B , 106 : 3124 – 3130 .
  • Sumanasekera , G. U. , Allen , J. L. , Fang , S. L. , Loper , A. L. , Rao , A. M. and Eklund , P. C. 1999 . Electrochemical oxidation of single wall carbon nanotube bundles in sulfuric acid . J. Phys. Chem. B , 103 : 4292 – 4297 .
  • Thess , A. , Lee , R. , Nikolaev , P. , Dai , H. , Petit , P. , Robert , J. , Xu , C. , Lee , Y. H. , Kim , S. G. , Rinzler , A. G. , Colbert , D. T. , Scuseria , G. E. , Tománek , D. and Fischer , J. E. 1996 . Crystalline ropes of metallic carbon nanotubes . Science , 273 : 483 – 487 .
  • Tian , Z. Q. , Jiang , S. P. , Liang , Y. M. and Shen , P. K. 2006 . Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications . J. Phys. Chem. B , 110 : 5343 – 5350 .
  • Unger , E. , Graham , A. , Kreupl , F. , Liebau , M. and Hoenlein , W. 2002 . Electrochemical functionalization of multi‐walled carbon nanotubes for solvation and purification . Curr. Appl. Phys. , 2 : 107 – 111 .
  • Valentini , F. , Amine , A. , Orlanducci , S. , Terranova , M. L. and Palleschi , G. 2003 . Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes . Anal. Chem. , 75 : 5413 – 5421 .
  • Valentini , L. , Kenny , J. M. , Lozzi , L. and Santucci , S. 2002 . Formation of carbon nanotubes by plasma‐enhanced chemical vapor deposition: role of nitrogen and catalyst layer thickness . J. Appl. Phys. , 92 : 6188 – 6194 .
  • Vallentini , L. , Biagotti , J. , Kenny , J. M. and Santucci , S. 2003 . Effects of single‐walled carbon nanotubes on the crystallization behavior of polypropylene . J. Appl. Polym. Sci. , 87 : 708 – 713 .
  • Valter , B. , Ram , M. K. and Nicolini , C. 2002 . Synthesis of multiwalled carbon nanotubes and poly(o‐anisidine) nanocomposite material: fabrication and characterization of its Langmuir‐Schaefer films . Langmuir , 18 : 1535 – 1541 .
  • Vidal , J. C. , Garcia‐Ruiz , E. and Castillo , J. R. 2003 . Recent advances in electropolymerized conducting polymers in amperometric biosensors . Microchim. Acta , 143 : 93 – 111 .
  • Wang , H. S. , Li , T. H. , Jia , W. L. and Xu , H. Y. 2006 . Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3‐methylthiophene) modified electrode . Biosens. Bioelectron. , 22 : 664 – 669 .
  • Wang , J. 2005 . Carbon‐nanotube based electrochemical biosensors: a review . Electroanalysis , 17 : 7 – 14 .
  • Wang , J. , Chen , G. , Chatrathi , M. P. and Musameh , M. 2004 . Capillary electrophoresis microchip with a carbon nanotube‐modified electrochemical detector . Anal. Chem. , 76 : 298 – 302 .
  • Wang , J. , Dai , J. and Yarlagadda , T. 2005 . Carbon nanotube‐conducting‐polymer composite nanowires . Langmuir , 21 : 9 – 12 .
  • Wang , J. , Liu , G. and Lin , Y. 2006 . Amperometric choline biosensor fabricated through electrostatic assembly of bienzyme/polyelectrolyte hybrid layers on carbon nanotubes . Analyst , 131 : 477 – 483 .
  • Wang , J. and Musameh , M. 2003 . Carbon nanotube/teflon composite electrochemical sensors and biosensors . Anal. Chem. , 75 : 2075 – 2079 .
  • Wang , J. and Musameh , M. 2004 . Electrochemical detection of trace insulin at carbon‐nanotube‐modified electrodes . Anal. Chim. Acta , 511 : 33 – 36 .
  • Wei , C. , Srivastava , D. and Cho , K. 2002 . Thermal expansion and diffusion coefficients of carbon nanotube‐polymer composites . Nano Lett. , 2 : 647 – 650 .
  • Wildgoose , G. G. , Banks , C. E. , Leventis , H. C. and Compton , R. G. 2006 . Chemically modified carbon nanotubes for use in electroanalysis . Microchim. Acta , 152 : 187 – 214 .
  • Wilson , G. S. and Gifford , R. 2005 . Biosensors for real‐time in vivo measurements . Biosens. Bioelectron. , 20 : 2388 – 2403 .
  • Wong , W. K. , Li , C. P. , Au , F. C.K. , Fung , M. K. , Sun , X. H. , Lee , C. S. , Lee , S. T. and Zhu , W. 2003 . Fabrication and characterization of pure and well‐aligned carbon nanotubes using methane/nitrogenammonia plasma . J. Phys. Chem. B , 107 : 1514 – 1517 .
  • Xu , Q. , Zhang , L. and Zhu , J. 2003 . Controlled growth of composite nanowires based on coating Ni on carbon nanotubes by electrochemical deposition method . J. Phys. Chem. B , 107 : 8294 – 8296 .
  • Yan , Y. , Zhang , M. , Gong , K. , Su , L. , Guo , Z. and Mao , L. 2005 . Adsorption of methylene blue dye onto carbon nanotubes: a route to an electrochemically functional nanostructure and its layer‐by‐layer assembled nanocomposite . Chem. Mater. , 17 : 3457 – 3463 .
  • Yin , T. , Wei , W. and Zeng , J. 2006 . Selective detection of dopamine in the presence of ascorbic acid by use of glassy‐carbon electrodes modified with both polyaniline film and multi‐walled carbon nanotubes with incorporated β‐cyclodextrin . Anal. Bioanal. Chem. , 386 : 2087 – 2094 .
  • Yogeswaran , U. and Chen , S. M. 2007 . Electrocatalytic properties of electrodes which are functionalized with composite films of f‐MWCNTs incorporated with poly(neutral red) . J. Electrochem. Soc. , 154 : E178 – E186 .
  • Yogeswaran , U. and Chen , S. M. 2007 . Separation and concentration effect of f‐MWCNTs on electrocatalytic responses of ascorbic acid, dopamine and uric acid at f‐MWCNTs incorporated with poly(neutral red) composite films . Electrochim. Acta , 52 : 5985 – 5996 .
  • Yogeswaran , U. , Thiagarajan , S. and Chen , S. M. 2007 . Nanocomposite of functionalized multiwall carbon nanotubes with nafion, nanoplatinum, and nanogold biosensing film for simultaneous determination of ascorbic acid, epinephrine, and uric acid . Anal. Biochem. , 365 : 122 – 131 .
  • Yogeswaran , U. , Thiagarajan , S. and Chen , S. M. 2007 . Pinecone shape hydroxypropyl‐β‐cyclodextrine on a film of multiwalled carbon nanotubes coated with gold particles for the simultaneous determination of tyrosine, guanine, adenine and thymine . Carbon , 45 : 2783 – 2796 .
  • Yudasaka , M. , Yamada , R. , Sensui , N. , Wilkins , T. , Ichihashi , T. and Iijima , S. 1999 . Mechanism of the effect of NiCo, Ni and Co catalysts on the yield of single-wall carbon nanotubes formed by pulsed Nd:YAG laser ablation . J. Phys. Chem. B , 103 : 6224 – 6229 .
  • Yudasaka , M. , Zhang , M. and Iijima , S. 2000 . Porous target enhances production of single‐wall carbon nanotubes by laser ablation . Chem. Phys. Lett. , 323 : 549 – 553 .
  • Zhang , H. , Ding , Y. , Wu , C. , Chen , Y. , Zhu , Y. , He , Y. and Zhong , S. 2003 . The effect of laser power on the formation of carbon nanotubes prepared in CO2 continuous wave laser ablation at room temperature . Physica B , 325 : 224 – 229 .
  • Zhang , J. , Lee , J. K. , Wu , Y. and Murray , R. W. 2003 . Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single‐walled carbon nanotubes . Nano Lett. , 3 : 403 – 407 .
  • Zhang , M. , Gong , K. , Zhang , H. and Mao , L. 2005 . Layer‐by‐layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid . Biosens. Bioelectron. , 20 : 1270 – 1276 .
  • Zhang , M. , Yudasaka , M. and Iijima , S. 2001 . Single‐wall carbon nanotubes: a high yield of tubes through laser ablation of a crude‐tube target . Chem. Phys. Lett. , 336 : 196 – 200 .
  • Zhang , R. and Wang , X. 2007 . One step synthesis of multiwalled carbon nanotube/gold nanocomposites for enhancing electrochemical response . Chem. Mater. , 19 : 976 – 978 .
  • Zhang , T. , Nix , M. B. , Yoo , B. Y. , Deshusses , M. A. and Myung , N. V. 2006 . Electrochemically functionalized single‐walled carbon nanotube gas sensor . Electroanalysis , 18 : 1153 – 1158 .
  • Zhang , Y. and Iijima , S. 1999 . Formation of single‐wall carbon nanotubes by laser ablation of fullerenes at low temperature . Appl. Phys. Lett. , 75 : 3087 – 3089 .
  • Zheng , B. , Li , Y. and Liu , J. 2002 . CVD synthesis and purification of single walled carbon nanotubes on aerogel‐supported catalyst . Appl. Phys. A , 74 : 345 – 348 .
  • Zhou , J. , Booker , C. , Li , R. , Zhou , X. , Sham , T. K. , Sun , X. and Ding , Z. 2007 . An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs) . J. Am. Chem. Soc. , 129 : 744 – 745 .
  • Zhou , C. and Kumar , S. 2005 . Functionalized single wall carbon nanotubes treated with pyrrole for electrochemical supercapacitor membranes . Chem. Mater. , 17 : 1997 – 2002 .
  • Zhou , O. , Shimoda , H. , Gao , B. , Oh , S. , Fleming , L. and Yue , G. 2002 . Materials science of carbon nanotubes: fabrication, integration, and properties of macroscopic structures of carbon nanotubes . Acc. Chem. Res. , 35 : 1045 – 1053 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.