446
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

LES of Recirculation and Vortex Breakdown in Swirling Flames

, , &
Pages 809-832 | Received 19 Dec 2007, Published online: 09 May 2008

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (3)

Weeratunge Malalasekera, SalahS. Ibrahim, AssaadR. Masri, Sreenivasa Rao Gubba & Suresh Sadasivuni. (2013) Experience With the Large Eddy Simulation (LES) Technique for the Modeling of Premixed and Non-Premixed Combustion. Heat Transfer Engineering 34:14, pages 1156-1170.
Read now
K. K. J. Ranga Dinesh, K.W. Jenkins, M.P. Kirkpatrick & W. Malalasekera. (2012) Effects of Swirl on Intermittency Characteristics in Non-Premixed Flames. Combustion Science and Technology 184:5, pages 629-659.
Read now
K.K.J. Ranga Dinesh, K.W. Jenkins, M.P. Kirkpatrick & W. Malalasekera. (2009) Identification and analysis of instability in non-premixed swirling flames using LES. Combustion Theory and Modelling 13:6, pages 947-971.
Read now

Articles from other publishers (23)

Weilin Zeng, Xujiang Wang, Kai Hong Luo, Konstantina Vogiatzaki & Salvador Navarro-Martinez. (2024) A Generalised Series Model for the LES of Premixed and Non-Premixed Turbulent Combustion. Energies 17:1, pages 252.
Crossref
Borja Hernandez, Mariano Martín & Prashant Gupta. (2021) Numerical study of airflow regimes and instabilities produced by the swirl generation chamber in counter-current spray dryers. Chemical Engineering Research and Design 176, pages 89-101.
Crossref
Ruipengyu Li, Weeratunge Malalasekera, Salah Ibrahim & Assaad Masri. (2021) An LES-DFSD study of transient premixed propane/air flames propagating past obstacles. Fuel 302, pages 121099.
Crossref
Prakash Ghose & A. Datta. 2021. Proceedings of International Conference on Thermofluids. Proceedings of International Conference on Thermofluids 493 504 .
S. Vakilipour, Y. Tohidi, J. Al-Zaili & R. Riazi. (2019) A numerical investigation of CO2 dilution on the thermochemical characteristics of a swirl stabilized diffusion flame. Applied Mathematics and Mechanics 41:2, pages 327-348.
Crossref
Z. Huo, F. Salehi, S. Galindo-Lopez, M.J. Cleary & A.R. Masri. (2019) Sparse MMC-LES of a Sydney swirl flame. Proceedings of the Combustion Institute 37:2, pages 2191-2198.
Crossref
ZM Nikolaou & L Vervisch. (2018) Assessment of deconvolution-based flamelet methods for progress variable rate modeling. Aeronautics and Aerospace Open Access Journal 2:5.
Crossref
Z. M. Nikolaou & L. Vervisch. (2018) A Priori Assessment of an Iterative Deconvolution Method for LES Sub-grid Scale Variance Modelling. Flow, Turbulence and Combustion 101:1, pages 33-53.
Crossref
Yiheng Tong, Xiao Liu, Zhenkan Wang, Mattias Richter & Jens Klingmann. (2018) Experimental and numerical study on bluff-body and swirl stabilized diffusion flames. Fuel 217, pages 352-364.
Crossref
Bofeng Bai, Xing Li & Shuiqing Li. (2016) Computation of Supersonic Branching Flow with Aerosol Particle Separation. AIAA Journal 54:7, pages 2069-2076.
Crossref
Yasir M. Al-Abdeli & Assaad R. Masri. (2015) Review of laboratory swirl burners and experiments for model validation. Experimental Thermal and Fluid Science 69, pages 178-196.
Crossref
Babak Kashir, Sadegh Tabejamaat & Nafiseh Jalalatian. (2015) The impact of hydrogen enrichment and bluff-body lip thickness on characteristics of blended propane/hydrogen bluff-body stabilized turbulent diffusion flames. Energy Conversion and Management 103, pages 1-13.
Crossref
Babak Kashir, Sadegh Tabejamaat & Nafiseh Jalalatian. (2015) A numerical study on combustion characteristics of blended methane-hydrogen bluff-body stabilized swirl diffusion flames. International Journal of Hydrogen Energy 40:18, pages 6243-6258.
Crossref
L.Y.M. Gicquel, G. Staffelbach & T. Poinsot. (2012) Large Eddy Simulations of gaseous flames in gas turbine combustion chambers. Progress in Energy and Combustion Science 38:6, pages 782-817.
Crossref
N. Ansari, P. H. Pisciuneri, P. A. Strakey & P. Givi. (2012) Scalar-Filtered Mass-Density-Function Simulation of Swirling Reacting Flows on Unstructured Grids. AIAA Journal 50:11, pages 2476-2482.
Crossref
Yang Yang & Søren Knudsen Kær. (2012) Large-eddy simulations of the non-reactive flow in the Sydney swirl burner. International Journal of Heat and Fluid Flow 36, pages 47-57.
Crossref
R. De Meester, B. Naud, U. Maas & B. Merci. (2012) Transported scalar PDF calculations of a swirling bluff body flame (‘SM1’) with a reaction diffusion manifold. Combustion and Flame 159:7, pages 2415-2429.
Crossref
A. Valera-Medina, N. Syred, P. Bowen & A. Crayford. (2011) Studies of Swirl Burner Characteristics, Flame Lengths and Relative Pressure Amplitudes. Journal of Fluids Engineering 133:10.
Crossref
Naseem Ansari, Graham Goldin, Patrick Pisciuneri, Mehdi Nik, Pete Strakey & Peyman Givi. (2011) FDF Simulation of Swirling Reacting Flows on Unstructured Meshes. FDF Simulation of Swirling Reacting Flows on Unstructured Meshes.
K.K.J. Ranga Dinesh, K.W. Jenkins, M.P. Kirkpatrick & W. Malalasekera. (2010) Modelling of instabilities in turbulent swirling flames. Fuel 89:1, pages 10-18.
Crossref
T. Mahmud & S. K. Sangha. (2009) Prediction of a Turbulent Non-Premixed Natural Gas Flame in a Semi-Industrial Scale Furnace using a Radiative Flamelet Combustion Model. Flow, Turbulence and Combustion 84:1, pages 1-23.
Crossref
K.K.J. Ranga Dinesh & M.P. Kirkpatrick. (2009) Study of jet precession, recirculation and vortex breakdown in turbulent swirling jets using LES. Computers & Fluids 38:6, pages 1232-1242.
Crossref
Agustin Valera-Medina, Nicholas Syred & Anthony Griffiths. (2009) Characterisation of Large Coherent Structures in a Swirl Burner under Combustion Conditions. Characterisation of Large Coherent Structures in a Swirl Burner under Combustion Conditions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.