313
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Swirl on Intermittency Characteristics in Non-Premixed Flames

, , &
Pages 629-659 | Received 18 Feb 2011, Accepted 22 Dec 2011, Published online: 14 May 2012
 

Abstract

Swirl effects on velocity, mixture fraction, and temperature intermittency have been analyzed for turbulent methane flames using large eddy simulation (LES). The LES solves the filtered governing equations on a structured Cartesian grid using a finite volume method, with turbulence and combustion modeling based on the localized dynamic Smagorinsky and the steady laminar flamelet models, respectively. Probability density function (PDF) distributions demonstrate a Gaussian shape closer to the centerline region of the flame and a delta function at the far radial position. However, non-Gaussian PDFs are observed for velocity and mixture fraction on the centerline in a region where center jet precession occurs. Non-Gaussian behavior is also observed for the temperature PDFs close to the centerline region of the flame. Due to the occurrence of recirculation zones, the variation from turbulent to nonturbulent flow is more rapid for the velocity than the mixture fraction and therefore indicates how rapidly turbulence affects the molecular transport in these regions of the flame.

ACKNOWLEDGMENTS

This work was supported by the Engineering and Physical Research Council (EPSRC) under grant number (EP/E036945/1) on the Modeling and Simulation of Intermittent Flows.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.