57
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Onset of Carbonization: Spatial Location Via Simultaneous LIF-LII and Characterization Via TEM

Pages 343-360 | Received 26 Mar 1996, Accepted 10 Jun 1996, Published online: 27 Apr 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (3)

RichardA. Dobbins. (2007) Hydrocarbon Nanoparticles Formed in Flames and Diesel Engines. Aerosol Science and Technology 41:5, pages 485-496.
Read now
Tami C. Bond & RobertW. Bergstrom. (2006) Light Absorption by Carbonaceous Particles: An Investigative Review. Aerosol Science and Technology 40:1, pages 27-67.
Read now
RANDALL L. VANDER WAL. (1997) A TEM Methodology for the Study of Soot Particle Structure. Combustion Science and Technology 126:1-6, pages 333-351.
Read now

Articles from other publishers (22)

Hope A. Michelsen, Emeric Boigné, Paul E. Schrader, K. Olof Johansson, Matthew F. Campbell, Ray P. Bambha & Matthias Ihme. (2023) Jet-entrainment sampling: A new method for extracting particles from flames. Proceedings of the Combustion Institute 39:1, pages 847-855.
Crossref
Georgios A. Kelesidis & Sotiris E. Pratsinis. (2022) Santoro flame: The volume fraction of soot accounting for its morphology & composition. Combustion and Flame 240, pages 112025.
Crossref
Daniel Bartos, Mariano Sirignano, Matthew J. Dunn, Andrea D'Anna & Assaad Rachid Masri. (2019) Soot inception in laminar coflow diffusion flames. Combustion and Flame 205, pages 180-192.
Crossref
Maria L. Botero, Nick Eaves, Jochen A.H. Dreyer, Yuan Sheng, Jethro Akroyd, Wenming Yang & Markus Kraft. (2019) Experimental and numerical study of the evolution of soot primary particles in a diffusion flame. Proceedings of the Combustion Institute 37:2, pages 2047-2055.
Crossref
Evgeny Valerievich Gurentsov. (2018) A review on determining the refractive index function, thermal accommodation coefficient and evaporation temperature of light-absorbing nanoparticles suspended in the gas phase using the laser-induced incandescence. Nanotechnology Reviews 7:6, pages 583-604.
Crossref
Changsheng Su, Yujun Wang, Ashok Kumar & Paul McGinn. (2018) Simulating Real World Soot-Catalyst Contact Conditions for Lab-Scale Catalytic Soot Oxidation Studies. Catalysts 8:6, pages 247.
Crossref
Mariano Sirignano, Daniel Bartos, Marielena Conturso, Matthew Dunn, Andrea D'Anna & Assaad R. Masri. (2017) Detection of nanostructures and soot in laminar premixed flames. Combustion and Flame 176, pages 299-308.
Crossref
H.A. Michelsen, C. Schulz, G.J. Smallwood & S. Will. (2015) Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications. Progress in Energy and Combustion Science 51, pages 2-48.
Crossref
R. L. Vander Wal. (2009) Laser-induced incandescence: excitation and detection conditions, material transformations and calibration. Applied Physics B 96:4, pages 601-611.
Crossref
Andrea D’Anna. (2009) Combustion-formed nanoparticles. Proceedings of the Combustion Institute 32:1, pages 593-613.
Crossref
M. Alfè, B. Apicella, R. Barbella, J.-N. Rouzaud, A. Tregrossi & A. Ciajolo. (2009) Structure–property relationship in nanostructures of young and mature soot in premixed flames. Proceedings of the Combustion Institute 32:1, pages 697-704.
Crossref
Kemal Eseller, Fang-Yu Yueh, Jagdish Singh, Olin Norton, Robert Cook & William St. Cyr. (2007) Hydrocarbon Rocket Engine Plume Imaging with Laser Induced Incandescence. Hydrocarbon Rocket Engine Plume Imaging with Laser Induced Incandescence.
Charles S. McEnally, Lisa D. Pfefferle, Burak Atakan & Katharina Kohse-Höinghaus. (2006) Studies of aromatic hydrocarbon formation mechanisms in flames: Progress towards closing the fuel gap. Progress in Energy and Combustion Science 32:3, pages 247-294.
Crossref
Randy L. Vander Wal. Soot Nanostructure: Definition, Quantification and Implications. Soot Nanostructure: Definition, Quantification and Implications.
Randy L Vander Wal & Aaron J Tomasek. (2004) Soot nanostructure: dependence upon synthesis conditions. Combustion and Flame 136:1-2, pages 129-140.
Crossref
S E Zelensky. (2003) Self-induced attenuation of pulsed laser radiation in an aqueous suspension of submicron light-absorbing particles. Journal of Physics: Condensed Matter 15:40, pages 6647-6657.
Crossref
Randall L. Vander Wal, Thomas M. Ticich & Valerie E. Curtis. (2000) Directed Synthesis of Metal-Catalyzed Carbon Nanofibers and Graphite Encapsulated Metal Nanoparticles. The Journal of Physical Chemistry B 104:49, pages 11606-11611.
Crossref
Boman Axelsson, Robert Collin & Per-Erik Bengtsson. (2000) Laser-induced incandescence for soot particle size measurements in premixed flat flames. Applied Optics 39:21, pages 3683.
Crossref
Robert H. Hurt, Gregory P. Crawford & Hong-Shig Shim. (2000) Equilibrium nanostructure of primary soot particles. Proceedings of the Combustion Institute 28:2, pages 2539-2546.
Crossref
Randy L. Vander Wal & Thomas M. Ticich. (1999) Cavity ringdown and laser-induced incandescence measurements of soot. Applied Optics 38:9, pages 1444.
Crossref
Randall L. Vander Wal. (1998) Calibration and comparison of laser-induced incandescence with cavity ring-down. Symposium (International) on Combustion 27:1, pages 59-67.
Crossref
K Smyth. (1997) Aspects of soot dynamics as revealed by measurements of broadband fluorescence and flame luminosity in flickering diffusion flames. Combustion and Flame 111:3, pages 185-194.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.