310
Views
64
CrossRef citations to date
0
Altmetric
Original Articles

An Eigenvalue Method for Computing the Burning Rates of RDX Propellants

, &
Pages 35-82 | Received 05 Sep 1995, Accepted 06 Nov 1996, Published online: 27 Apr 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

J. Glorian, J. Ehrhardt & B. Baschung. (2024) Estimating ignition delay times of nitroglycerin: A chemical kinetic modeling study. Combustion Science and Technology 196:3, pages 406-420.
Read now
S. Delbarre, L. Courty, M. William-Louis & P. Gillard. (2023) Laser Ignition of Two Low-Vulnerability RDX-Based Gun Propellants: Influence of the Atmosphere on Ignition and Combustion Properties. Combustion Science and Technology 195:7, pages 1450-1460.
Read now
L Bryce Whitson$suffix/text()$suffix/text() & Steven Forrest Son. (2016) Comparison of simplified models for nitramine propellant combustion. Combustion Theory and Modelling 20:1, pages 58-76.
Read now
Neeraj Kumbhakarna, StefanT. Thynell, Arindrajit Chowdhury & Ping Lin. (2011) Analysis of RDX-TAGzT pseudo-propellant combustion with detailed chemical kinetics. Combustion Theory and Modelling 15:6, pages 933-956.
Read now
Vincent Giovangigli, Nicolas Meynet & Mitchell Smooke. (2006) Application of continuation techniques to ammonium perchlorate plane flames. Combustion Theory and Modelling 10:5, pages 771-798.
Read now

Articles from other publishers (59)

Alejandro Rivero Santamaría & Mario Piris. (2024) Time evolution of natural orbitals in ab initio molecular dynamics . The Journal of Chemical Physics 160:7.
Crossref
Jordan Ehrhardt, Julien Glorian, Léo Courty, Barbara Baschung & Philippe Gillard. (2023) Detailed kinetic mechanism for nitrocellulose low temperature decomposition. Combustion and Flame 258, pages 113057.
Crossref
Keiichi Hori, Yutaka Wada, Makihito Nishioka, Motoyasu Kimura, Iwao Komai, Koh Kobayashi & Jyun Ohba. 2023. Nano and Micro‐Scale Energetic Materials. Nano and Micro‐Scale Energetic Materials 285 308 .
Zhihe Zhang, Lili Ye, Xiaodong Wang, Xionggang Wu, Wei Gao, Jizhen Li & Mingshu Bi. (2022) Unraveling the reaction mechanism on pyrolysis of 1,3,5-trinitro-1,3,5-triazinane (RDX). Combustion and Flame 242, pages 112220.
Crossref
J Glorian & B Baschung. (2021) Detailed kinetic modeling of nitroglycerin low-temperature decomposition. Journal of Physics: Conference Series 1721:1, pages 012002.
Crossref
Rodger E. Cornell, Mark C. Barbet & Michael P. Burke. (2021) Automated discovery of influential chemically termolecular reactions in energetic material combustion: A case study for RDX. Proceedings of the Combustion Institute 38:1, pages 787-794.
Crossref
Lemi Türker. (2020) Some Novel Tricyclic Caged-Nitramines - A DFT Study. Earthline Journal of Chemical Sciences, pages 35-48.
Crossref
Xiao-ting Yan, Zhi-xun Xia, Li-ya Huang & Xu-dong Na. (2020) Combustion of nitrate ester plasticized polyether propellants硝酸酯增塑聚醚(NEPE)推进剂燃烧的数值与 试验研究. Journal of Zhejiang University-SCIENCE A 21:10, pages 834-847.
Crossref
Mayank Khichar, Lalit Patidar & Stefan Thynell. (2019) Comparative Analysis of Vaporization and Thermal Decomposition of Cyclotrimethylenetrinitramine (RDX). Journal of Propulsion and Power 35:6, pages 1098-1107.
Crossref
Mayank Khichar, Lalit Patidar & Stefan Thynell. (2019) Comparative analysis of vaporization and thermal decomposition from simultaneous thermal analysis studies of cyclotrimethylenetrinitramine (RDX). Comparative analysis of vaporization and thermal decomposition from simultaneous thermal analysis studies of cyclotrimethylenetrinitramine (RDX).
Lalit Patidar, Mayank Khichar & Stefan Thynell. (2019) Modeling of HMX Monopropellant Combustion with Detailed Condensed-Phase Kinetics. Modeling of HMX Monopropellant Combustion with Detailed Condensed-Phase Kinetics.
Ting Xu, Juan Zhao, Xian-Long Wang & Qing-Tian Meng. (2019) Reaction mechanism of ${\rm{D}}+\mathrm{ND}\to {\rm{N}}+{{\rm{D}}}_{2}$ and its state-to-state quantum dynamics. Chinese Physics B 28:2, pages 023102.
Crossref
Lalit Patidar, Mayank Khichar & Stefan T. Thynell. (2019) Intermolecular potential parameters for transport property modeling of energetic organic molecules. Combustion and Flame 200, pages 232-241.
Crossref
Pratim Kumar. (2018) An overview on properties, thermal decomposition, and combustion behavior of ADN and ADN based solid propellants. Defence Technology 14:6, pages 661-673.
Crossref
Mayank Khichar, Lalit Patidar & Stefan T. Thynell. (2018) Improvement and validation of a detailed reaction mechanism for thermal decomposition of RDX in liquid phase. Combustion and Flame 198, pages 455-465.
Crossref
Kaiqiang Zhang & Stefan T. Thynell. (2017) Examination of the Mechanism of the Yield of N 2 O from Nitroxyl (HNO) in the Solution Phase by Theoretical Calculations . The Journal of Physical Chemistry A 121:23, pages 4505-4516.
Crossref
Shin Hyuk Kim, Baggie W. Nyande, Hyoun Soo Kim, Jung Su Park, Woo Jin Lee & Min Oh. (2016) Numerical analysis of thermal decomposition for RDX, TNT, and Composition B. Journal of Hazardous Materials 308, pages 120-130.
Crossref
Cui-Xia Yao, Pei-Yu Zhang, Zhi-Xin Duan & Guang-Jiu Zhao. (2014) Influence of collision energy on the dynamics of the reaction H (2S) + NH (X3Σ−) → N (4S) + H2 (X1Σ g + ) by the state-to-state quantum mechanical study. Theoretical Chemistry Accounts 133:6.
Crossref
Vincent Giovangigli & Shihab Rahman. (2013) Numerical simulation of unsteady planar ammonium perchlorate flames including detailed gas phase chemistry and fluid–structure interaction. Comptes Rendus. Mécanique 341:1-2, pages 152-160.
Crossref
Yong-Jiang Yu, Qiang Xu & Xiu-Wei Xu. (2011) Influence of rotational excitation and collision energy on the stereo dynamics of the reaction: N( 4 S)+H 2 ( v = 0, j = 0, 2, 5, 10)→NH(X 3 Σ − ) + H . Chinese Physics B 20:12, pages 123402.
Crossref
Neeraj Kumbhakarna, Stefan Thynell & Arindrajit Chowdhury. (2009) Modeling of RDX/TAGzT Propellant Combustion with Detailed Chemical Kinetics. Modeling of RDX/TAGzT Propellant Combustion with Detailed Chemical Kinetics.
V. P. Sinditskii, V. Yu. Egorshev, M. V. Berezin & V. V. Serushkin. (2009) Mechanism of HMX combustion in a wide range of pressures. Combustion, Explosion, and Shock Waves 45:4, pages 461-477.
Crossref
Yutaka Wada, Yoshio Seike, Nobuyuki Tsuboi, Katsuya Hasegawa, Kiyokazu Kobayashi, Makihito Nishioka & Keiichi Hori. (2009) Combustion model of tetra-ol glycidyl azide polymer. Proceedings of the Combustion Institute 32:2, pages 2005-2012.
Crossref
William R. Anderson & Clint B. Conner. (2009) Comparison of gas-phase mechanisms applied to RDX combustion model. Proceedings of the Combustion Institute 32:2, pages 2123-2130.
Crossref
O. P. Korobeinichev, A. A. Paletskii & E. N. Volkov. (2008) Flame structure and combustion chemistry of energetic materials. Russian Journal of Physical Chemistry B 2:2, pages 206-228.
Crossref
E. N. Volkov, A. A. Paletsky & O. P. Korobeinichev. (2008) RDX flame structure at atmospheric pressure. Combustion, Explosion, and Shock Waves 44:1, pages 43-54.
Crossref
Merrill W. Beckstead, Karthik Puduppakkam, Piyush Thakre & Vigor Yang. (2007) Modeling of combustion and ignition of solid-propellant ingredients. Progress in Energy and Combustion Science 33:6, pages 497-551.
Crossref
William J. Pitz & Charles K. Westbrook. (2007) A detailed chemical kinetic model for gas phase combustion of TNT. Proceedings of the Combustion Institute 31:2, pages 2343-2351.
Crossref
M. W. Beckstead. (2006) Recent progress in modeling solid propellant combustion. Combustion, Explosion and Shock Waves 42:6, pages 623-641.
Crossref
Ephraim B. Washburn & Merrill W. Beckstead. (2006) Modeling Multiphase Effects in the Combustion of HMX and RDX. Journal of Propulsion and Power 22:5, pages 938-946.
Crossref
Karthik Puduppakkam, Matthew Tanner & Merrill Beckstead. (2006) RDX/GAP Pseudo-Propellant Combustion Modeling. RDX/GAP Pseudo-Propellant Combustion Modeling.
Heather M. Netzloff, Michael A. Collins & Mark S. Gordon. (2006) Growing multiconfigurational potential energy surfaces with applications to X+H2 (X=C,N,O) reactions. The Journal of Chemical Physics 124:15.
Crossref
Jae-Kun Yoon, Piyush Thakre & Vigor Yang. (2006) Modeling of RDX/GAP/BTTN pseudo-propellant combustion. Combustion and Flame 145:1-2, pages 300-315.
Crossref
T.P. Parr, D.M. Hanson-Parr, M.D. Smooke & R.A. Yetter. (2005) AP/(N2+ C2H2+ C2H4) gaseous fuel diffusion flame studies. Proceedings of the Combustion Institute 30:2, pages 2113-2121.
Crossref
Merrill Beckstead, Vigor Yang & K. Puduppakkam. (2004) Modeling and Simulation of Combustion of Solid Propellant Ingredients Using Detailed Chemical Kinetics. Modeling and Simulation of Combustion of Solid Propellant Ingredients Using Detailed Chemical Kinetics.
Ephraim Washburn & Merrill Beckstead. (2004) Modeling Multi-Phase Effects in the Combustion of HMX and RDX. Modeling Multi-Phase Effects in the Combustion of HMX and RDX.
Tim Parr & Donna Hanson-Parr. (2004) Cyclotetramethylene tetranitramine/glycidyl azide polymer/butanetriol trinitrate propellant flame structure. Combustion and Flame 137:1-2, pages 38-49.
Crossref
Eun. S. Kim, Rongjie Yang & Vigor Yang. 2003. Energetic Materials - Part 2. Detonation, Combustion. Energetic Materials - Part 2. Detonation, Combustion 295 350 .
Dan C. Sorescu, Betsy M. Rice & Donald L. Thompson. 2003. Energetic Materials - Part 1. Decomposition, Crystal and Molecular Properties. Energetic Materials - Part 1. Decomposition, Crystal and Molecular Properties 125 184 .
E.S. Kim, V. Yang & Y.-C. Liau. (2002) Modeling of HMX/GAP pseudo-propellant combustion. Combustion and Flame 131:3, pages 227-245.
Crossref
Ronald Z. Pascual, George C. Schatz, Gÿorgÿ Lendvay & Diego Troya. (2002) Quasiclassical Trajectory and Transition State Theory Studies of the N( 4 S) + H 2 ↔ NH(X 3 Σ - ) + H Reaction . The Journal of Physical Chemistry A 106:16, pages 4125-4136.
Crossref
T.P. Parr, D.M. Hanson-Parr, M.D. Smooke & R.A. Yetter. (2002) Ammonium perchlorate/(H2+CO) gaseous fuel diffusionflame studies. Proceedings of the Combustion Institute 29:2, pages 2881-2888.
Crossref
Carl F. Melius & Mari Carmen Piqueras. (2002) Initial reaction steps in the condensed-phase decomposition of propellants. Proceedings of the Combustion Institute 29:2, pages 2863-2871.
Crossref
Tim Parr & Donna Hanson-Parr. (2001) RDX/GAP/BTTN propellant flame studies. Combustion and Flame 127:1-2, pages 1895-1905.
Crossref
M.A Schroeder, R.A Fifer, M.S Miller, R.A Pesce-Rodriguez, C.J.S McNesby, G Singh & J.M Widder. (2001) Condensed-phase processes during combustion of solid gun propellants. II. nitramine composite propellants. Combustion and Flame 126:1-2, pages 1577-1598.
Crossref
Shaowen Zhang & Thanh N. Truong. (2000) Direct ab initio dynamics studies of N+H2↔NH+H reaction . The Journal of Chemical Physics 113:15, pages 6149-6153.
Crossref
Tim Parr, Donna Hanson-Parr, Mitchell Smooke & Richard Yetter. (2000) Laser diagnostic measurement of solid propellant flame structure for model validation. Laser diagnostic measurement of solid propellant flame structure for model validation.
. 2000. Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics. Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics 501 531 .
. 2000. Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics. Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics 477 500 .
. 2000. Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics. Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics 33 71 .
. 2000. Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics. Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics.
M.D. Smooke, R.A. Yetter, T.P. Parr, D.M. Hanson-Parr, M.A. Tanoff, M.B. Colket & R.J. Hall. (2000) Computational and experimental study of ammonium perchlorate/ethylene counterflow diffusion flames. Proceedings of the Combustion Institute 28:2, pages 2013-2020.
Crossref
Paras M. Agrawal, Betsy M. Rice, Dan C. Sorescu & Donald L. Thompson. (1999) NPT-MC simulations of enhanced solubility of RDX in polar-modified supercritical CO2. Fluid Phase Equilibria 166:1, pages 1-19.
Crossref
J. Louwers, G. M. H. J. L. Gadiot, M. Q. Brewster, S. F. Son, T. Parr & D. Hanson-Parr. (1999) Steady-State Hydrazinium Nitroformate (HNF) Combustion Modeling. Journal of Propulsion and Power 15:6, pages 772-777.
Crossref
Youngjoo Lee, Ching-Jen Tang & Thomas A. Litzinger. (1999) A study of the chemical and physical processes governing CO2 laser-induced pyrolysis and combustion of RDX. Combustion and Flame 117:3, pages 600-628.
Crossref
D. Chakraborty & M. C. Lin. (1999) Theoretical Studies of Methyleneamino (CH 2 N) Radical Reactions. 1. Rate Constants and Product Branching Ratios for the CH 2 N + N 2 O Process by ab Initio Molecular Orbital/Statistical Theory Calculations . The Journal of Physical Chemistry A 103:5, pages 601-606.
Crossref
Jeroen Louwers, Tim Parr & Donna Hanson-Parr. (1999) Decomposition and flame structure of hydrazinium nitroformate. Decomposition and flame structure of hydrazinium nitroformate.
Kuldeep Prasad, Richard A. Yetter & Mitchell D. Smooke. (1998) An eigenvalue method for computing the burning rates of HMX propellants. Combustion and Flame 115:3, pages 406-416.
Crossref
Michael A. Tanoff, Nenad Ilincic, Mitchell D. Smooke, Richard A. Yetter, Timothy P. Parr & Donna M. Hanson-Parr. (1998) Computational and experimental study of ammonium perchlorate combustion in a counterflow geometry. Symposium (International) on Combustion 27:2, pages 2397-2404.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.