197
Views
56
CrossRef citations to date
0
Altmetric
Application

The optical ferroelectric ceramic as working body for electrocaloric refrigeration

, , , &
Pages 213-217 | Received 15 Sep 1988, Published online: 08 Feb 2011

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (6)

G. Suchaneck & G. Gerlach. (2017) The impact of the P-E hysteresis on the performance of electrocaloric cooling. Ferroelectrics 516:1, pages 1-7.
Read now
S.G. Lu, B. Rozic, Z. Kutnjiak & Q.M. Zhang. (2011) Electrocaloric Effect in Ferroelectric P(VDF-TrFE) Copolymers. Integrated Ferroelectrics 125:1, pages 176-185.
Read now
D.Q. Xiao, B. Yang, S.Q. Peng, Y.C. Wang & J.G. Zhu. (1997) Analyses and syntheses of ferroelectric refrigeration ceramics. Ferroelectrics 195:1, pages 93-96.
Read now
W.N. Lawless. (1993) Electrocaloric effects in antiferroelectric PbZrO3 . Ferroelectrics Letters Section 15:1, pages 27-31.
Read now
Y.V. Sinyavsky & V.M. Brodyansky. (1992) Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body. Ferroelectrics 131:1, pages 321-325.
Read now
L. Shebanov & K. Borman. (1992) On lead-scandium tantalate solid solutions with high electrocaloric effect. Ferroelectrics 127:1, pages 143-148.
Read now

Articles from other publishers (50)

Julius Metzdorf, Patrick Corhan, David Bach, Sakyo Hirose, Dirk Lellinger, Stefan Mönch, Frank Kühnemann, Olaf Schäfer-Welsen & Kilian Bartholomé. (2024) Electrocaloric cooling system utilizing latent heat transfer for high power density. Communications Engineering 3:1.
Crossref
Junning Li, Alvar TorellóVeronika Kovacova, Uros Prah, Ashwath Aravindhan, Torsten Granzow, Tomoyasu Usui, Sakyo Hirose & Emmanuel Defay. (2023) High cooling performance in a double-loop electrocaloric heat pump. Science 382:6672, pages 801-805.
Crossref
Suxin Qian, David Catalini, Jan MuehlbauerBoyang LiuHet Mevada, Huilong Hou, Yunho Hwang, Reinhard Radermacher & Ichiro Takeuchi. (2023) High-performance multimode elastocaloric cooling system. Science 380:6646, pages 722-727.
Crossref
Xiaoshi Qian, Xin Chen, Lei Zhu & Q. M. Zhang. (2023) Fluoropolymer ferroelectrics: Multifunctional platform for polar-structured energy conversion. Science 380:6645.
Crossref
Andrei L. Kholkin, Svitlana Kopyl, Alexander Tselev & Gunnar Suchaneck. 2023. The Electrocaloric Effect. The Electrocaloric Effect 407 425 .
Gunnar Suchaneck. 2023. The Electrocaloric Effect. The Electrocaloric Effect 175 204 .
Yan Li, Tong Fu, Wanli Peng, Guoxing Lin & Jincan Chen. (2022) Performance optimization on the irreversible regenerative Ericsson refrigeration cycle using electrocaloric materials as the working medium. International Journal of Refrigeration 138, pages 197-205.
Crossref
Alvar Torelló & Emmanuel Defay. (2022) Electrocaloric Coolers: A Review. Advanced Electronic Materials 8:6.
Crossref
Xingyue Ma, Yurong Yang, L. Bellaiche & Di Wu. (2022) Large electrocaloric response via percolation of polar nanoregions. Physical Review B 105:5.
Crossref
Stefan Moench, Richard Reiner, Patrick Waltereit, Christian Molin, Sylvia Gebhardt, David Bach, Roland Binninger & Kilian Bartholome. (2022) Enhancing Electrocaloric Heat Pump Performance by Over 99% Efficient Power Converters and Offset Fields. IEEE Access 10, pages 46571-46588.
Crossref
S. Crossley, R. W. Whatmore, N. D. Mathur & X. Moya. (2021) Quasi-indirect measurement of electrocaloric temperature change in PbSc0.5Ta0.5O3 via comparison of adiabatic and isothermal electrical polarization data. APL Materials 9:1.
Crossref
Adriana Greco & Claudia Masselli. (2020) Electrocaloric Cooling: A Review of the Thermodynamic Cycles, Materials, Models, and Devices. Magnetochemistry 6:4, pages 67.
Crossref
Xavier Moya & Neil D. Mathur. (2020) It’s not about the mass. Nature Energy 5:12, pages 941-942.
Crossref
A. Torelló, P. Lheritier, T. Usui, Y. Nouchokgwe, M. Gérard, O. Bouton, S. Hirose & E. Defay. (2020) Giant temperature span in electrocaloric regenerator. Science 370:6512, pages 125-129.
Crossref
Romain Faye, Tomoyasu Usui, Alvar Torello, Brahim Dkhil, Xavier Moya, Neil D. Mathur, Sakyo Hirose & Emmanuel Defay. (2020) Heat flow in electrocaloric multilayer capacitors. Journal of Alloys and Compounds 834, pages 155042.
Crossref
Gunnar Suchaneck & Gerald Gerlach. 2020. Recent Advances in Thin Films. Recent Advances in Thin Films 369 388 .
B. Nair, T. Usui, S. Crossley, S. Kurdi, G. G. Guzmán-Verri, X. Moya, S. Hirose & N. D. Mathur. (2019) Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature 575:7783, pages 468-472.
Crossref
S. Crossley, B. Nair, R. W. Whatmore, X. Moya & N. D. Mathur. (2019) Electrocaloric Cooling Cycles in Lead Scandium Tantalate with True Regeneration via Field Variation. Physical Review X 9:4.
Crossref
A. Greco, C. Aprea, A. Maiorino & C. Masselli. (2019) A review of the state of the art of solid-state caloric cooling processes at room-temperature before 2019. International Journal of Refrigeration 106, pages 66-88.
Crossref
A. S. Starkov, O. V. Pakhomov, V. V. Rodionov, A. A. Amirov & I. A. Starkov. (2019) Evaluation of the Thermodynamic Efficiency of Solid-State Coolers and Generators Based on the Multicaloric Effect. Technical Physics 64:4, pages 547-554.
Crossref
E. Defay, R. Faye, G. Despesse, H. Strozyk, D. Sette, S. Crossley, X. Moya & N. D. Mathur. (2018) Enhanced electrocaloric efficiency via energy recovery. Nature Communications 9:1.
Crossref
Zhen Liu, Bin Yang, Wenwu Cao & Turab Lookman. (2017) Influence of Finite Size on the Electrocaloric Response in PbTiO 3 Ceramics Near Room Temperature Using Landau Theory . physica status solidi (b) 255:2.
Crossref
T Usui, S Hirose, A Ando, S Crossley, B Nair, X Moya & N D Mathur. (2017) Effect of inactive volume on thermocouple measurements of electrocaloric temperature change in multilayer capacitors of 0.9Pb(Mg 1/3 Nb 2/3 )O 3 –0.1PbTiO 3 . Journal of Physics D: Applied Physics 50:42, pages 424002.
Crossref
Hitoshi Honmi, Yoichiro Hashizume, Takashi Nakajima & Soichiro Okamura. (2017) Thermodynamic analysis of a cooling system using electrocaloric effect. Japanese Journal of Applied Physics 56:10S, pages 10PC09.
Crossref
Gunnar Suchaneck, Oleg Pakhomov & Gerald Gerlach. 2017. Refrigeration. Refrigeration.
Daniele Sette, Alexis Asseman, Mathieu Gérard, Hervé Strozyk, Romain Faye & Emmanuel Defay. (2016) Electrocaloric cooler combining ceramic multi-layer capacitors and fluid. APL Materials 4:9.
Crossref
Xiaoshi Qian, Shan Wu, Eugene Furman, Q. M. Zhang & Ji Su. (2015) Ferroelectric polymers as multifunctional electroactive materials: recent advances, potential, and challenges. MRS Communications 5:2, pages 115-129.
Crossref
Li Shuang Wu, Jin Mei Wu & Hui Shan Yang. (2014) Thermoeconomic Optimization for a Ferroelectric Ericsson Refrigerator. Advanced Materials Research 1070-1072, pages 1780-1784.
Crossref
Hui Shan Yang. (2014) The Influence of Thermal Resistances and Nonperfect Regenerative Losses on the Performance of a Ferroelectric Ericsson Refrigerator. Advanced Materials Research 1006-1007, pages 168-172.
Crossref
X. Moya, S. Kar-Narayan & N. D. Mathur. (2014) Caloric materials near ferroic phase transitions. Nature Materials 13:5, pages 439-450.
Crossref
Sergey Karmanenko, Alexander Semenov, Antonina Dedyk, Andrey Es’kov, Alexey Ivanov, Pavel Beliavskiy, Yulia Pavlova, Andrey Nikitin, Ivan Starkov, Alexander Starkov & Oleg Pakhomov. 2014. Electrocaloric Materials. Electrocaloric Materials 183 223 .
Xinyu Li, Sheng-Guo Lu, Xiaoshi Qian, Minren Lin & Q. M. Zhang. 2014. Electrocaloric Materials. Electrocaloric Materials 107 124 .
Jani Peräntie, Tatiana Correia, Juha Hagberg & Antti Uusimäki. 2014. Electrocaloric Materials. Electrocaloric Materials 47 89 .
Xinyu Li, Sheng-Guo Lu, Xiang-Zhong Chen, Haiming Gu, Xiao-shi Qian & Q. M. Zhang. (2013) Pyroelectric and electrocaloric materials. J. Mater. Chem. C 1:1, pages 23-37.
Crossref
SHENG-GUO LU & QIMING ZHANG. (2012) LARGE ELECTROCALORIC EFFECT IN RELAXOR FERROELECTRICS. Journal of Advanced Dielectrics 02:03, pages 1230011.
Crossref
Matjaz Valant. (2012) Electrocaloric materials for future solid-state refrigeration technologies. Progress in Materials Science 57:6, pages 980-1009.
Crossref
Xiang-zhong Chen, Xiao-shi Qian, Xinyu Li, S. G. Lu, Hai-ming Gu, Minren Lin, Qun-dong Shen & Q. M. Zhang. (2012) Enhanced electrocaloric effect in poly(vinylidene fluoride-trifluoroethylene)-based terpolymer/copolymer blends. Applied Physics Letters 100:22.
Crossref
S.-G. Lu, Q.M. Zhang & Z. Kutnjak. 2011. Thin Film Growth. Thin Film Growth 364 383 .
D. Guyomar, S. Pruvost & G. Sebald. (2008) Energy harvesting based on FE-FE transition in ferroelectric single crystals. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 55:2, pages 279-285.
Crossref
Jizhou He, Jincan Chen, Jin T. Wang & Ben Hua. (2003) Inherent regenerative losses of a ferroelectric Ericsson refrigeration cycle. International Journal of Thermal Sciences 42:2, pages 169-175.
Crossref
Jizhou He, Jincan Chen, Yinghui Zhou & Jin T. Wang. (2002) Regenerative characteristics of electrocaloric Stirling or Ericsson refrigeration cycles. Energy Conversion and Management 43:17, pages 2319-2327.
Crossref
Jin T. Wang & Jincan Chen. (2002) Influence of several irreversible losses on the performance of a ferroelectric Stirling refrigeration-cycle. Applied Energy 72:2, pages 495-511.
Crossref
L.P. Bulat & E.M. Sher. (2002) Some aspects of phase transitions control by thermoelectric method. Some aspects of phase transitions control by thermoelectric method.
Sidney B. Lang & Dilip K. Das-Gupta. 2001. Handbook of Advanced Electronic and Photonic Materials and Devices. Handbook of Advanced Electronic and Photonic Materials and Devices 1 55 .
D.Q Xiao, Y.C Wang, R.L Zhang, S.Q Peng, J.G Zhu & B Yang. (1998) Electrocaloric properties of (1−x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 ferroelectric ceramics near room temperature. Materials Chemistry and Physics 57:2, pages 182-185.
Crossref
Yu. V. Sinyavskii. (1995) Analysis of the efficiency of an electrocaloric cryorefrigerator. Chemical and Petroleum Engineering 31:9, pages 501-506.
Crossref
Yu. V. Sinyavskii. (1995) Electrocaloric refrigerators: A promising alternative to current low-temperature apparatus. Chemical and Petroleum Engineering 31:6, pages 295-306.
Crossref
D.Q. Xiao, B. Yang, J.G. Zhu & Z.H. Qian. 1994. Ecomaterials. Ecomaterials 605 610 .
A. Sternberg, L. Shebanov, E. Birks, M. Ozolinsh, V. Dimza & E. Klotins. (1992) Modified lead containing perovskite ceramics for electrooptic, electrocaloric, pyroelectric and electrostrictive applications. Modified lead containing perovskite ceramics for electrooptic, electrocaloric, pyroelectric and electrostrictive applications.
Yu.V. Sinyavsky, G.E. Lugansky & N.D. Pashkov. (1992) Electrocaloric refrigeration: Investigation of a model and prognosis of mass and efficiency indexes. Cryogenics 32, pages 28-31.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.