481
Views
116
CrossRef citations to date
0
Altmetric
Original Articles

Classical hydraulic jump: length of roller

, &
Pages 591-608 | Received 24 Jan 1990, Published online: 19 Jan 2010

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (18)

Ruidi Bai, Rongcai Tang, Frédéric Murzyn & Hang Wang. (2023) Pre-aerated classic hydraulic jump downstream a partly-stepped chute. Journal of Hydraulic Research 61:2, pages 260-271.
Read now
Majeid Heydari, Saeid Shabanlou & Babak Sanahmadi. (2022) Self-adaptive extreme learning machine-based prediction of roller length of hydraulic jump on rough bed. ISH Journal of Hydraulic Engineering 28:2, pages 152-162.
Read now
Hamed Azimi, Hossein Bonakdari & Isa Ebtehaj. (2021) Gene expression programming-based approach for predicting the roller length of a hydraulic jump on a rough bed. ISH Journal of Hydraulic Engineering 27:sup1, pages 77-87.
Read now
Laura Montano & Stefan Felder. (2020) An experimental study of air–water flows in hydraulic jumps on flat slopes. Journal of Hydraulic Research 58:5, pages 767-777.
Read now
Abdorreza Kabiri-Samani & Soroush Naderi. (2017) Turbulent structure in the transition from super- to subcritical flow without a hydraulic jump. Journal of Hydraulic Research 55:1, pages 50-62.
Read now
H. Wang & H. Chanson. (2015) Air entrainment and turbulent fluctuations in hydraulic jumps. Urban Water Journal 12:6, pages 502-518.
Read now
Stefano Pagliara & Michele Palermo. (2015) Hydraulic jumps on rough and smooth beds: aggregate approach for horizontal and adverse-sloped beds. Journal of Hydraulic Research 53:2, pages 243-252.
Read now
Abdorreza Kabiri-Samani, Mohammad Hossein Rabiei, Hamidreza Safavi & Seyed Mahmood Borghei. (2014) Experimental–analytical investigation of super- to subcritical flow transition without a hydraulic jump. Journal of Hydraulic Research 52:1, pages 129-136.
Read now
Joshua D. Mortensen, Steven L. Barfuss & Blake P. Tullis. (2012) Effects of hydraulic jump location on air entrainment in closed conduits. Journal of Hydraulic Research 50:3, pages 298-303.
Read now
Joshua D. Mortensen, Steven L. Barfuss & Michael C. Johnson. (2011) Scale effects of air entrained by hydraulic jumps within closed conduits. Journal of Hydraulic Research 49:1, pages 90-95.
Read now
F. Murzyn, D. Mouazé & J.R. Chaplin. (2007) Air–water interface dynamic and free surface features in hydraulic jumps. Journal of Hydraulic Research 45:5, pages 679-685.
Read now
A. Bushra & Noor Afzal. (2006) Hydraulic jump in circular and U-shaped channels. Journal of Hydraulic Research 44:4, pages 567-576.
Read now
Noor Afzal & A. Bushra. (2002) Structure of the turbulent hydraulic jump in a trapezoidal channel. Journal of Hydraulic Research 40:2, pages 205-214.
Read now
Alessandro Valiani. (1997) Linear and angular momentum conservation in hydraulic jump. Journal of Hydraulic Research 35:3, pages 323-354.
Read now
Roger Bremen & Willi H. Hager. (1993) T-jump in abruptly expanding channel. Journal of Hydraulic Research 31:1, pages 61-78.
Read now
Willi H. Hager & Damei Li. (1992) Sill-controlled energy dissipator. Journal of Hydraulic Research 30:2, pages 165-181.
Read now

Articles from other publishers (98)

Hung Viet Ho. (2024) Determination of the surface roller length of hydraulic jumps in horizontal rectangular channels using the machine learning method. Stochastic Environmental Research and Risk Assessment.
Crossref
G.L. Richard. (2024) Roll waves in a predictive model for open-channel flows in the smooth turbulent case. Journal of Fluid Mechanics 983.
Crossref
Nishank Agrawal & Ellora Padhi. (2024) Impacts of bed roughness and orientation on hydraulic jump: A review. Water Science and Engineering.
Crossref
João Pedro Paludo Bocchi, Daniela Guzzon Sanagiotto & Eder Daniel Teixeira. (2024) Submerged hydraulic jump: a computational analysis in different scales. RBRH 29.
Crossref
Mahmood Shafai Bejestan, Ali Zamaninia & Mohammad Bahrami Yarahmadi. (2023) Characteristics of Hydraulic Jump in Stilling Basin Covered with Different Arrangements of Dune Bed Forms. Iranian Journal of Science and Technology, Transactions of Civil Engineering 47:6, pages 4021-4030.
Crossref
Hamidreza Bagheri, Manouchehr Heidarpour & Farzaneh Noghani. (2023) Laboratory investigations on hydraulic jump characteristics using submerged vanes and adverse slope. Journal of Hydro-environment Research 51, pages 15-24.
Crossref
Harshit Kumar Jayant & Bharat Jhamnani. (2023) Numerical simulation of free and submerged hydraulic jump over trapezoidal and triangular macroroughness. Heliyon 9:11, pages e22540.
Crossref
Juan Francisco Macián-Pérez, Rafael García-Bartual, P. Amparo López-Jiménez & Francisco José Vallés-Morán. (2023) Numerical modeling of hydraulic jumps at negative steps to improve energy dissipation in stilling basins. Applied Water Science 13:10.
Crossref
Oguz Simsek, M. Sami Akoz & N Goksu Soydan Oksal. (2023) Experimental analysis of hydraulic jump at high froude numbers. Sādhanā 48:2.
Crossref
Farhad Bahmanpouri, Carlo Gualtieri & Hubert Chanson. (2023) Flow patterns and free-surface dynamics in hydraulic jump on pebbled rough bed. Proceedings of the Institution of Civil Engineers - Water Management 176:1, pages 32-49.
Crossref
S. H. Hojjati, A. R. Zarrati & J. Farhoudi. (2022) Flow structure, air entrainment and turbulence characteristics in a classical hydraulic jump, a review. International Journal of Environmental Science and Technology 20:1, pages 1153-1168.
Crossref
Antonio Agresta, Chiara Biscarini, Fabio Caraffini & Valentino Santucci. 2023. Applications of Evolutionary Computation. Applications of Evolutionary Computation 475 490 .
Marzieh Naem Hasani, Kouros Nekoufar, Morteza Biklarian, Morteza Jamshidi, Quoc Bao Pham & Duong Tran Anh. (2022) Investigating the Pressure Fluctuations of Hydraulic Jump in an Abrupt Expanding Stilling Basin with Roughened Bed. Water 15:1, pages 80.
Crossref
Emad Khanahmadi, Amir Ahmad Dehghani, Mehdi Meftah Halaghi, Esmaeil Kordi & Farhad Bahmanpouri. (2022) Investigating the characteristic of hydraulic T-jump on rough bed based on experimental and numerical modeling. Modeling Earth Systems and Environment 8:4, pages 5695-5712.
Crossref
Rongcai TangJingmei ZhangRuidi BaiHang Wang. (2022) Transverse Nonuniformity of Air–Water Flow and Lateral Wall Effects in Quasi-Two-Dimensional Hydraulic Jump. Journal of Irrigation and Drainage Engineering 148:10.
Crossref
Safir Haddad, Samuel Vaux, Kevin Varrall & Olivier Vauquelin. (2022) Theoretical model of continuous inertial gravity currents including a jump condition. Physical Review Fluids 7:8.
Crossref
Jorge Estrella, Davide Wüthrich & Hubert Chanson. (2022) Flow Patterns, Roller Characteristics, and Air Entrainment in Weak Hydraulic Jumps: Does Size Matter?. Journal of Fluids Engineering 144:7.
Crossref
Ruidi Bai, Rongfu Ning, Shanjun Liu & Hang Wang. (2022) Hydraulic Jump on a Partially Vegetated Bed. Water Resources Research 58:7.
Crossref
Deepak Singh & Munendra Kumar. (2022) Gene expression programming for computing energy dissipation over type-B piano key weir. Renewable Energy Focus 41, pages 230-235.
Crossref
Ashabul Hoque & Anip Kumar Paul. (2022) Experimental investigation of oxygen transfer efficiency in hydraulic jumps, plunging jets, and plunging breaking waves. Water Supply 22:4, pages 4320-4333.
Crossref
Lei Wang & Ming-jun Diao. (2021) Velocity Distribution and Attenuation Characteristics in F Jumps on Rough Beds. Iranian Journal of Science and Technology, Transactions of Civil Engineering 46:2, pages 1393-1404.
Crossref
Martin Pavúček, Ján Rumann & Peter Dušička. (2022) Investigation of scours on a physical model of the Hričov weir using photogrammetry. Pollack Periodica 17:1, pages 105-110.
Crossref
Mohsen Nasrabadi, Yaser Mehri, Amin Ghassemi & Mohammad Hossein Omid. (2021) Predicting submerged hydraulic jump characteristics using machine learning methods. Water Supply 21:8, pages 4180-4194.
Crossref
Saman Baharvand, Ali Jozaghi, Reza Fatahi-Alkouhi, Saeed Karimzadeh, Ruhollah Nasiri & Babak Lashkar-Ara. (2020) Comparative Study on the Machine Learning and Regression-Based Approaches to Predict the Hydraulic Jump Sequent Depth Ratio. Iranian Journal of Science and Technology, Transactions of Civil Engineering 45:4, pages 2719-2732.
Crossref
Rongcai Tang, Ruidi Bai & Hang Wang. (2021) A comparative study of pre-aeration effects on hydraulic jump air–water flow properties at high Froude numbers. Environmental Fluid Mechanics 21:6, pages 1333-1355.
Crossref
Stefan Felder, Laura Montano, Hanwen Cui, William Peirson & Matthias Kramer. (2021) Effect of inflow conditions on the free-surface properties of hydraulic jumps. Journal of Hydraulic Research 59:6, pages 1004-1017.
Crossref
Juan Francisco Macián-Pérez, Francisco José Vallés-MoránRafael García-Bartual. (2021) Assessment of the Performance of a Modified USBR Type II Stilling Basin by a Validated CFD Model. Journal of Irrigation and Drainage Engineering 147:11.
Crossref
Zhongtian BaiRuidi BaiRongcai TangHang Wang & Shanjun Liu. (2021) Case Study of Prototype Hydraulic Jump on Slope: Air Entrainment and Free-Surface Measurement. Journal of Hydraulic Engineering 147:9.
Crossref
Martin Pavúček, Ján Rumann & Peter Dušička. (2021) Experimental assessment of secondary stilling basin at the Hričov weir. Pollack Periodica 16:2, pages 67-72.
Crossref
Alp Bugra Aydin, Ahmet Baylar, Fahri Ozkan, Muhammed Cihat Tuna & Mualla Ozturk. (2021) Influence of cross-section geometry on air demand ratio in high-head conduits with a radial gate. Water Supply.
Crossref
Umut Türker & Manousos Valyrakis. (2021) Hydraulic jump on rough beds: conceptual modeling and experimental validation. Water Supply 21:4, pages 1423-1437.
Crossref
Sherry L. Hunt & Kem C. Kadavy. (2021) Types I, II, III, and IV Stilling Basin Performance for Stepped Chutes Applied to Embankment Dams. Journal of Hydraulic Engineering 147:6.
Crossref
Lei Wang & Ming-jun Diao. (2021) Velocity distribution characteristics of counter-current jets. Proceedings of the Institution of Civil Engineers - Water Management, pages 1-11.
Crossref
Ruidi BaiHang WangRongcai TangShanjun LiuWeilin Xu. (2021) Roller Characteristics of Preaerated High-Froude-Number Hydraulic Jumps. Journal of Hydraulic Engineering 147:4.
Crossref
Seyed Hami Hojjati & Amir Reza Zarrati. (2021) Numerical study of scouring downstream of a stilling basin. Environmental Fluid Mechanics 21:2, pages 465-482.
Crossref
Ivan StojnicMichael PfisterJorge MatosAnton J. Schleiss. (2021) Effect of 30-Degree Sloping Smooth and Stepped Chute Approach Flow on the Performance of a Classical Stilling Basin. Journal of Hydraulic Engineering 147:2.
Crossref
Mohammad Zounemat-Kermani & Amin Mahdavi-Meymand. (2021) Embedded fuzzy-based models in hydraulic jump prediction. Journal of Hydroinformatics 23:1, pages 151-170.
Crossref
Shayan Maleki & Virgilio Fiorotto. (2021) Hydraulic Jump Stilling Basin Design over Rough Beds. Journal of Hydraulic Engineering 147:1.
Crossref
Amir Hossein Azimi. 2021. Water Engineering Modeling and Mathematic Tools. Water Engineering Modeling and Mathematic Tools 297 342 .
Martin Pavúček, Ján Rumann & Peter Dušička. (2020) Hydraulic Modelling of Riverbed Embankment Under the Hričov Weir. IOP Conference Series: Materials Science and Engineering 960:4, pages 042044.
Crossref
Juan Francisco Macián-Pérez, Arnau Bayón, Rafael García-BartualP. Amparo López-JiménezFrancisco José Vallés-Morán. (2020) Characterization of Structural Properties in High Reynolds Hydraulic Jump Based on CFD and Physical Modeling Approaches. Journal of Hydraulic Engineering 146:12.
Crossref
Amir Ghaderi, Mehdi Dasineh, Francesco Aristodemo & Ali Ghahramanzadeh. (2020) Characteristics of free and submerged hydraulic jumps over different macroroughnesses. Journal of Hydroinformatics 22:6, pages 1554-1572.
Crossref
Robert Ljubičić, Ivana Vićanović, Budo Zindović, Radomir Kapor & Ljubodrag Savić. (2020) Image processing for hydraulic jump free-surface detection: coupled gradient/machine learning model. Measurement Science and Technology 31:10, pages 104003.
Crossref
M. Kramer & D. Valero. (2020) Turbulence and self-similarity in highly aerated shear flows: The stable hydraulic jump. International Journal of Multiphase Flow 129, pages 103316.
Crossref
Eugene Retsinis & Panayiotis Papanicolaou. (2020) Numerical and Experimental Study of Classical Hydraulic Jump. Water 12:6, pages 1766.
Crossref
Juan Macián-Pérez, Francisco Vallés-Morán, Santiago Sánchez-Gómez, Marco De-Rossi-Estrada & Rafael García-Bartual. (2020) Experimental Characterization of the Hydraulic Jump Profile and Velocity Distribution in a Stilling Basin Physical Model. Water 12:6, pages 1758.
Crossref
Michele Palermo & Simone Pagliara. (2020) Teaching Hydraulics and Hydraulic Structure Design with Leonardo da Vinci. Journal of Hydraulic Engineering 146:5.
Crossref
Davide Wüthrich, Rui Shi & Hubert Chanson. (2020) Physical study of the 3-dimensional characteristics and free-surface properties of a breaking roller in bores and surges. Experimental Thermal and Fluid Science 112, pages 109980.
Crossref
Yakun Liu, Di Zhang, Jian Wu, Dong Zhang & Miaomiao Yang. (2020) Roughened bed stilling basin and its hydraulic jump characteristics. IOP Conference Series: Materials Science and Engineering 758:1, pages 012082.
Crossref
Harry E. SchulzJose G. Vasconcelos & Andrew C. Patrick. (2020) Air Entrainment in Pipe-Filling Bores and Pressurization Interfaces. Journal of Hydraulic Engineering 146:2.
Crossref
Juan Francisco Macián-Pérez, Rafael García-Bartual, Boris Huber, Arnau Bayon & Francisco José Vallés-Morán. (2020) Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach. Water 12:1, pages 227.
Crossref
C S JamesC S James. 2020. Hydraulic Structures. Hydraulic Structures 183 241 .
Luka Barbaca, Bryce W. Pearce, Harish Ganesh, Steven L. Ceccio & Paul A. Brandner. (2019) On the unsteady behaviour of cavity flow over a two-dimensional wall-mounted fence. Journal of Fluid Mechanics 874, pages 483-525.
Crossref
Nafiseh Torkamanzad, Ali Hosseinzadeh Dalir, Farzin Salmasi & Akram Abbaspour. (2019) Hydraulic Jump below Abrupt Asymmetric Expanding Stilling Basin on Rough Bed. Water 11:9, pages 1756.
Crossref
Arpan Arunrao Deshmukh, Naveen Sudharsan, Avinash D Vasudeo & Aniruddha Dattatraya Ghare. (2019) Effect of roughness on sequent depth in hydraulic jumps over rough bed. Journal of the Croatian Association of Civil Engineers 71:2, pages 105-111.
Crossref
Seyedpouyan AhmadpanahS. Samuel Li. (2019) Simulations of bubbly two-phase flow in hydraulic jumps of relatively high Reynolds number. Canadian Journal of Civil Engineering 46:1, pages 48-60.
Crossref
Hyungju Yoo, Seoungoh Lee & Moonhyung Park. (2018) Characteristic Analysis of Pressure Fluctuation and Free Surface Displacement in River-Crossing Structure through Statistical Approach. Journal of the Korean Society of Hazard Mitigation 18:6, pages 385-393.
Crossref
Adam Witt, John S. Gulliver & Lian Shen. (2018) Numerical investigation of vorticity and bubble clustering in an air entraining hydraulic jump. Computers & Fluids 172, pages 162-180.
Crossref
Mohammadreza Jalili GhazizadehJalal Attari & Samira Farhadi Rad. (2018) Study of flow and hydraulic jump along side weirs. Proceedings of the Institution of Civil Engineers - Water Management 171:3, pages 134-142.
Crossref
Laura Montano, Rui Li & Stefan Felder. (2018) Continuous measurements of time-varying free-surface profiles in aerated hydraulic jumps with a LIDAR. Experimental Thermal and Fluid Science 93, pages 379-397.
Crossref
Sho Harada & S. Samuel Li. (2017) Modelling hydraulic jump using the bubbly two-phase flow method. Environmental Fluid Mechanics 18:2, pages 335-356.
Crossref
Hamed Azimi, Hossein Bonakdari, Isa Ebtehaj, Bahram Gharabaghi & Fatemeh Khoshbin. (2017) Evolutionary design of generalized group method of data handling-type neural network for estimating the hydraulic jump roller length. Acta Mechanica 229:3, pages 1197-1214.
Crossref
Hamed Azimi, Hossein Bonakdari, Isa Ebtehaj & David G. Michelson. (2016) A combined adaptive neuro-fuzzy inference system–firefly algorithm model for predicting the roller length of a hydraulic jump on a rough channel bed. Neural Computing and Applications 29:6, pages 249-258.
Crossref
Jaafar Maatooq & Enass Taleb. (2018) The performance of hydraulic jump over rough bed stilling basin consisting of cubic-shape elements. MATEC Web of Conferences 162, pages 03001.
Crossref
Nasrin Hassanpour, Ali Hosseinzadeh Dalir, Davod Farsadizadeh & Carlo Gualtieri. (2017) An Experimental Study of Hydraulic Jump in a Gradually Expanding Rectangular Stilling Basin with Roughened Bed. Water 9:12, pages 945.
Crossref
Jing Zhang, Qinghua Zhang, Tiantian Wang, Shuning Li, Yanfang Diao, Ming Cheng & John Baruch. (2017) Experimental Study on the Effect of an Expanding Conjunction Between a Spilling Basin and the Downstream Channel on the Height After Jump. Arabian Journal for Science and Engineering 42:9, pages 4069-4078.
Crossref
Masoud Karbasi & H. Md. Azamathulla. (2016) GEP to predict characteristics of a hydraulic jump over a rough bed. KSCE Journal of Civil Engineering 20:7, pages 3006-3011.
Crossref
Patrick Jonsson, Patrik Andreasson, J.Gunnar I. Hellström, Pär Jonsén & T. Staffan Lundström. (2016) Smoothed Particle Hydrodynamic simulation of hydraulic jump using periodic open boundaries. Applied Mathematical Modelling 40:19-20, pages 8391-8405.
Crossref
J Vercruysse, K Verelst & T De Mulder. 2016. Sustainable Hydraulics in the Era of Global Change. Sustainable Hydraulics in the Era of Global Change 579 587 .
Patrick Jonsson, Pär Jonsén, Patrik Andreasson, T. Staffan Lundström & J. Gunnar I. Hellström. (2016) Smoothed Particle Hydrodynamic Modelling of Hydraulic Jumps: Bulk Parameters and Free Surface Fluctuations. Engineering 08:06, pages 386-402.
Crossref
O. Thual. (2013) Modelling rollers for shallow water flows. Journal of Fluid Mechanics 728, pages 1-4.
Crossref
G. L. Richard & S. L. Gavrilyuk. (2013) The classical hydraulic jump in a model of shear shallow-water flows. Journal of Fluid Mechanics 725, pages 492-521.
Crossref
Francesco Giuseppe CarolloVito FerroVincenzo Pampalone. (2012) New Expression of the Hydraulic Jump Roller Length. Journal of Hydraulic Engineering 138:11, pages 995-999.
Crossref
R. Skartlien, J.A. Julshamn, C.J. Lawrence & L. Liu. (2012) A gas entrainment model for hydraulic jumps in near horizontal pipes. International Journal of Multiphase Flow 43, pages 39-55.
Crossref
G. L. Richard & S. L. Gavrilyuk. (2012) A new model of roll waves: comparison with Brock’s experiments. Journal of Fluid Mechanics 698, pages 374-405.
Crossref
Esmaeil KordiIsmail Abustan. (2012) Transitional Expanding Hydraulic Jump. Journal of Hydraulic Engineering 138:1, pages 105-110.
Crossref
Hubert Chanson. (2011) Bubbly Two-Phase Flow in Hydraulic Jumps at Large Froude Numbers. Journal of Hydraulic Engineering 137:4, pages 451-460.
Crossref
M. K. BeiramiM. R. Chamani. (2010) Hydraulic jump in sloping channels: roller length and energy loss. Canadian Journal of Civil Engineering 37:4, pages 535-543.
Crossref
G. Rosatti & L. Begnudelli. (2010) The Riemann Problem for the one-dimensional, free-surface Shallow Water Equations with a bed step: Theoretical analysis and numerical simulations. Journal of Computational Physics 229:3, pages 760-787.
Crossref
A. Nassar Mohamed. (2010) Modeling of Free Jumps Downstream Symmetric and Asymmetric Expansions: Theoritical Analysis and Method of Stochastic Gradient Boosting. Journal of Hydrodynamics 22:1, pages 110-120.
Crossref
Frédéric Murzyn & Hubert Chanson. (2009) Free-surface fluctuations in hydraulic jumps: Experimental observations. Experimental Thermal and Fluid Science 33:7, pages 1055-1064.
Crossref
Francesco Giuseppe CarolloVito FerroVincenzo Pampalone. (2009) New Solution of Classical Hydraulic Jump. Journal of Hydraulic Engineering 135:6, pages 527-531.
Crossref
Stefano Pagliara, Ilaria Lotti & Michele Palermo. (2008) Hydraulic jump on rough bed of stream rehabilitation structures. Journal of Hydro-environment Research 2:1, pages 29-38.
Crossref
H K Zare & R E Baddour. (2007) Three-dimensional study of spatial submerged hydraulic jump. Canadian Journal of Civil Engineering 34:9, pages 1140-1148.
Crossref
Francesco Giuseppe CarolloVito FerroVincenzo Pampalone. (2007) Hydraulic Jumps on Rough Beds. Journal of Hydraulic Engineering 133:9, pages 989-999.
Crossref
M. K. BeiramiMohammad R. Chamani. (2006) Hydraulic Jumps in Sloping Channels: Sequent Depth Ratio. Journal of Hydraulic Engineering 132:10, pages 1061-1068.
Crossref
Kouki Onitsuka, Juichiro Akiyama, Hideto Isechi & Daisuke Kiuchi. 2004. Environmental Hydraulics and Sustainable Water Management, Two Volume Set. Environmental Hydraulics and Sustainable Water Management, Two Volume Set 1703 1710 .
Farhad Yazdandoost & Jalal AttariA Armanini, C Dalr?F Della Putta, M Larcher, L Rampanelli & M Righetti. 2004. Hydraulics of Dams and River Structures. Hydraulics of Dams and River Structures 385 392 .
. 2004. Hydraulics of Open Channel Flow. Hydraulics of Open Channel Flow 512 527 .
Mustafa GunalRangaswami Narayanan. (1996) Hydraulic Jump in Sloping Channels. Journal of Hydraulic Engineering 122:8, pages 436-442.
Crossref
. 1996. Air Bubble Entrainment in Free-Surface Turbulent Shear Flows. Air Bubble Entrainment in Free-Surface Turbulent Shear Flows 239 261 .
John C. Morfett. (1992) Threshold of motion of coarse-grained sediment under waves in shallow water. Coastal Engineering 18:3-4, pages 283-295.
Crossref
Willi H. Hager. (1992) Discussion of “ Force on Slab beneath Hydraulic Jump ” by Javad Farhoudi and Rangaswami Narayanan (January, 1991, Vol. 117, No. 1) . Journal of Hydraulic Engineering 118:4, pages 666-667.
Crossref
Willi H. HagerWilli H. Hager. 1992. Energy Dissipators and Hydraulic Jump. Energy Dissipators and Hydraulic Jump 67 76 .
Willi H. HagerWilli H. Hager. 1992. Energy Dissipators and Hydraulic Jump. Energy Dissipators and Hydraulic Jump 53 66 .
Willi H. HagerWilli H. Hager. 1992. Energy Dissipators and Hydraulic Jump. Energy Dissipators and Hydraulic Jump 41 52 .
Willi H. HagerWilli H. Hager. 1992. Energy Dissipators and Hydraulic Jump. Energy Dissipators and Hydraulic Jump 5 40 .
Willi H. HagerWilli H. Hager. 1992. Energy Dissipators and Hydraulic Jump. Energy Dissipators and Hydraulic Jump 1 4 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.