Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 111, 2013 - Issue 16-17: In Honour of Professor Kutzelnigg
868
Views
33
CrossRef citations to date
0
Altmetric
Invited Article

What is the most efficient way to reach the canonical MP2 basis set limit?

, , &
Pages 2653-2662 | Received 05 Jun 2013, Accepted 09 Jul 2013, Published online: 19 Aug 2013

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

Achintya Kumar Dutta, Frank Neese & Róbert Izsák. (2018) Accelerating the coupled-cluster singles and doubles method using the chain-of-sphere approximation. Molecular Physics 116:11, pages 1428-1434.
Read now

Articles from other publishers (32)

Gabriella E. Ravin & E. Curotto. (2024) A potential energy surface of spectroscopic accuracy for a lithium ion–hydrogen clusters. Chemical Physics Letters 834, pages 140951.
Crossref
Yuqi Wang, Yang Guo, Frank Neese, Edward F. Valeev, Wei Li & Shuhua Li. (2023) Cluster-in-Molecule Approach with Explicitly Correlated Methods for Large Molecules. Journal of Chemical Theory and Computation 19:22, pages 8076-8089.
Crossref
Yang Guo, Fabijan Pavošević, Kantharuban Sivalingam, Ute Becker, Edward F. Valeev & Frank Neese. (2023) SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. VI. Linear-scaling explicitly correlated N-electron valence state perturbation theory with pair natural orbital. The Journal of Chemical Physics 158:12.
Crossref
A. R. Zane & E. Curotto. (2022) Electrolyte clusters as hydrogen sponges: diffusion Monte Carlo simulations. Physical Chemistry Chemical Physics 24:42, pages 26094-26101.
Crossref
Lars Urban, Henryk Laqua & Christian Ochsenfeld. (2022) Highly Efficient and Accurate Computation of Multiple Orbital Spaces Spanning Fock Matrix Elements on Central and Graphics Processing Units for Application in F12 Theory. Journal of Chemical Theory and Computation 18:7, pages 4218-4228.
Crossref
Benjamin Helmich-Paris, Bernardo de Souza, Frank Neese & Róbert Izsák. (2021) An improved chain of spheres for exchange algorithm. The Journal of Chemical Physics 155:10.
Crossref
Luke A. Kurfman, Tuguldur T. Odbadrakh & George C. Shields. (2021) Calculating Reliable Gibbs Free Energies for Formation of Gas-Phase Clusters that Are Critical for Atmospheric Chemistry: (H 2 SO 4 ) 3 . The Journal of Physical Chemistry A 125:15, pages 3169-3176.
Crossref
Ashutosh Kumar, Frank Neese & Edward F. Valeev. (2020) Explicitly correlated coupled cluster method for accurate treatment of open-shell molecules with hundreds of atoms. The Journal of Chemical Physics 153:9.
Crossref
Frank Neese, Frank Wennmohs, Ute Becker & Christoph Riplinger. (2020) The ORCA quantum chemistry program package. The Journal of Chemical Physics 152:22.
Crossref
T Yu, Y Zh Liu, W P Lai, Y D Ma & Zh X Ge. (2020) Assessment of second-order Møller-Plesset perturbation theory for isomerization and dissociation energies of nitramide. Journal of Physics: Conference Series 1507:2, pages 022016.
Crossref
Holger Kruse & Jiří Šponer. (2019) Revisiting the Potential Energy Surface of the Stacked Cytosine Dimer: FNO-CCSD(T) Interaction Energies, SAPT Decompositions, and Benchmarking. The Journal of Physical Chemistry A 123:42, pages 9209-9222.
Crossref
Andreas Irmler & Andreas Grüneis. (2019) Particle-particle ladder based basis-set corrections applied to atoms and molecules using coupled-cluster theory. The Journal of Chemical Physics 151:10.
Crossref
Andreas Irmler & Fabian Pauly. (2019) Multipole-based distance-dependent screening of Coulomb integrals. The Journal of Chemical Physics 151:8.
Crossref
Peter Pinski & Frank Neese. (2019) Analytical gradient for the domain-based local pair natural orbital second order Møller-Plesset perturbation theory method (DLPNO-MP2). The Journal of Chemical Physics 150:16.
Crossref
Peter R. Franke, Joseph T. Brice, Christopher P. Moradi, Henry F. SchaeferIIIIII & Gary E. Douberly. (2019) Ethyl + O 2 in Helium Nanodroplets: Infrared Spectroscopy of the Ethylperoxy Radical . The Journal of Physical Chemistry A 123:16, pages 3558-3568.
Crossref
Sergey A. Pisarev, Dmitry A. Shulga, Vladimir A. Palyulin & Nikolay S. Zefirov. (2018) Lone pairs vs. covalent bonds: conformational effects in bicyclo[3.3.1]nonane derivatives. Structural Chemistry 30:2, pages 509-522.
Crossref
Holger Kruse, Pavel Banáš & Jiřı́ Šponer. (2018) Investigations of Stacked DNA Base-Pair Steps: Highly Accurate Stacking Interaction Energies, Energy Decomposition, and Many-Body Stacking Effects. Journal of Chemical Theory and Computation 15:1, pages 95-115.
Crossref
M. W. Li & P. M. Zimmerman. (2018) Stepwise basis set selection. Journal of Computational Chemistry 39:26, pages 2153-2162.
Crossref
E. J. Padma Malar & P. Divya. (2018) Structural Stability in Dimer and Tetramer Clusters of l -Alanine in the Gas Phase and the Feasibility of Peptide Bond Formation . The Journal of Physical Chemistry B 122:25, pages 6462-6470.
Crossref
Yang Guo, Kantharuban Sivalingam, Edward F. Valeev & Frank Neese. (2017) Explicitly correlated N-electron valence state perturbation theory (NEVPT2-F12). The Journal of Chemical Physics 147:6.
Crossref
Giovanni Bistoni, Alexander A. Auer & Frank Neese. (2017) Understanding the Role of Dispersion in Frustrated Lewis Pairs and Classical Lewis Adducts: A Domain-Based Local Pair Natural Orbital Coupled Cluster Study. Chemistry - A European Journal 23:4, pages 865-873.
Crossref
Yang Min Wang, Christof Hättig, Simen Reine, Edward Valeev, Thomas Kjærgaard & Kasper Kristensen. (2016) Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context. The Journal of Chemical Physics 144:20.
Crossref
Jan Řezáč & Pavel Hobza. (2016) Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications. Chemical Reviews 116:9, pages 5038-5071.
Crossref
Tony Anacker, J. Grant HillJoachim Friedrich. (2016) Optimized Basis Sets for the Environment in the Domain-Specific Basis Set Approach of the Incremental Scheme. The Journal of Physical Chemistry A 120:15, pages 2443-2458.
Crossref
Fabijan Pavošević, Peter Pinski, Christoph Riplinger, Frank Neese & Edward F. Valeev. (2016) SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. IV. Linear-scaling second-order explicitly correlated energy with pair natural orbitals. The Journal of Chemical Physics 144:14.
Crossref
Tony Anacker, David P. Tew & Joachim Friedrich. (2015) First UHF Implementation of the Incremental Scheme for Open-Shell Systems. Journal of Chemical Theory and Computation 12:1, pages 65-78.
Crossref
Holger Kruse, Arnost Mladek, Konstantinos Gkionis, Andreas Hansen, Stefan Grimme & Jiri Sponer. (2015) Quantum Chemical Benchmark Study on 46 RNA Backbone Families Using a Dinucleotide Unit. Journal of Chemical Theory and Computation 11:10, pages 4972-4991.
Crossref
Jiří Hostaš, Dávid Jakubec, Roman A. Laskowski, Ramachandran Gnanasekaran, Jan Řezáč, Jiří Vondrášek & Pavel Hobza. (2015) Representative Amino Acid Side-Chain Interactions in Protein–DNA Complexes: A Comparison of Highly Accurate Correlated Ab Initio Quantum Mechanical Calculations and Efficient Approaches for Applications to Large Systems . Journal of Chemical Theory and Computation 11:9, pages 4086-4092.
Crossref
Jan Řezáč, Matúš Dubecký, Petr Jurečka & Pavel Hobza. (2015) Extensions and applications of the A24 data set of accurate interaction energies. Physical Chemistry Chemical Physics 17:29, pages 19268-19277.
Crossref
Tony Anacker & Joachim Friedrich. (2014) New accurate benchmark energies for large water clusters: DFT is better than expected. Journal of Computational Chemistry 35:8, pages 634-643.
Crossref
Joachim Friedrich & Julia Hänchen. (2013) Incremental CCSD(T)(F12*)|MP2: A Black Box Method To Obtain Highly Accurate Reaction Energies. Journal of Chemical Theory and Computation 9:12, pages 5381-5394.
Crossref
Róbert Izsák, Frank Neese & Wim Klopper. (2013) Robust fitting techniques in the chain of spheres approximation to the Fock exchange: The role of the complementary space. The Journal of Chemical Physics 139:9.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.