Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 60, 1987 - Issue 3
42
Views
64
CrossRef citations to date
0
Altmetric
Original Articles

On the relation of dispersion to induction energies, and to their damping functions

Ion-atom potentials: the X2Σg+ and 1 2Σu+ states of H2+

Pages 527-539 | Received 08 Mar 1985, Accepted 06 Sep 1986, Published online: 23 Aug 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

Lulu Zhang, Daguang Yue, Juan Zhao, Yuzhi Song & Qingtian Meng. (2020) Potential energy curves, spectroscopic constants, and vibrational energy levels of CS+(X2Σ+/A2Π). Molecular Physics 118:2.
Read now
M. BOGGIO-PASQUA, A.I. VORONIN, PH. HALVICK, J.-C. RAYEZ & A. J. C. VARANDAS. (2000) Coupled ab initio potential energy surfaces for the two lowest 2A′ electronic states of the C2H molecule. Molecular Physics 98:23, pages 1925-1938.
Read now
A. J. C. VARANDAS & H. G. YU. (1997) Double many-body expansion potential energy surface for ground-state HO3 . Molecular Physics 91:2, pages 301-318.
Read now
A.J.C. Varandas & A.I. Voronin. (1995) Towards a double many-body expansion method for multivalued potential energy surfaces. Molecular Physics 85:3, pages 497-526.
Read now

Articles from other publishers (59)

V. C. Mota, P. J. S. B. Caridade, A. J. C. Varandas & B. R. L. Galvão. (2022) Quasiclassical Trajectory Study of the Si + SH Reaction on an Accurate Double Many-Body Expansion Potential Energy Surface. The Journal of Physical Chemistry A 126:22, pages 3555-3568.
Crossref
V. C. Mota, B. R. L. Galvão, D. V. B. Coura & A. J. C. Varandas. (2020) Accurate Potential Energy Surface for Quartet State HN 2 and Interplay of N( 4 S ) + NH( X̃ 3 Σ – ) versus H + N 2 ( A 3 Σ u + ) Reactions . The Journal of Physical Chemistry A 124:5, pages 781-789.
Crossref
C. E. M. Gonçalves, B. R. L. Galvão, V. C. Mota, J. P. Braga & A. J. C. Varandas. (2018) Accurate Explicit-Correlation-MRCI-Based DMBE Potential-Energy Surface for Ground-State CNO. The Journal of Physical Chemistry A 122:16, pages 4198-4207.
Crossref
Xiaowei Sheng, Shifeng Qian & Fengfei Hu. (2017) An analytical formula For He-Ne Van der Waals potential without any adjustable parameters. Chemical Physics 491, pages 56-60.
Crossref
Lu-Lu Zhang, Yu-Zhi Song, Shou-Bao Gao, Yuan Zhang & Qing-Tian Meng. (2016) Accurate double many-body expansion potential energy surface of HS 2 A 2 A′) by scaling the external correlation . Chinese Physics B 25:5, pages 053101.
Crossref
C. M. R. Rocha & A. J. C. Varandas. (2015) Accurate ab initio -based double many-body expansion potential energy surface for the adiabatic ground-state of the C3 radical including combined Jahn-Teller plus pseudo-Jahn-Teller interactions . The Journal of Chemical Physics 143:7.
Crossref
Jing Li & António J. C. Varandas. (2014) Accurate double many-body expansion potential energy surface for the 21 A ′ state of $\rm N_2O$N2O . The Journal of Chemical Physics 141:8.
Crossref
O. B. M. Teixeira, V. C. Mota, J. M. Garcia de la Vega & A. J. C. Varandas. (2014) Single-Sheeted Double Many-Body Expansion Potential Energy Surface for Ground-State ClO 2 . The Journal of Physical Chemistry A 118:26, pages 4851-4862.
Crossref
Yu-Zhi Song, Yong-Qing Li, Shou-Bao Gao & Qing-Tian Meng. (2014) Accurate ab initio-based DMBE potential energy surface for HLi2(X  2A′) via scaling of the external correlation. The European Physical Journal D 68:1.
Crossref
A. J. C. Varandas. (2013) Accurate Determination of the Reaction Course in HY 2 ⇌ Y + YH (Y = O, S): Detailed Analysis of the Covalent- to Hydrogen-Bonding Transition . The Journal of Physical Chemistry A 117:32, pages 7393-7407.
Crossref
Jing Li & António J. C. Varandas. (2012) Accurate ab-Initio-Based Single-Sheeted DMBE Potential-Energy Surface for Ground-State N 2 O . The Journal of Physical Chemistry A 116:18, pages 4646-4656.
Crossref
S. Srivastava, N. Sathyamurthy & A.J.C. Varandas. (2012) An accurate ab initio potential energy curve and the vibrational bound states of state of. Chemical Physics 398, pages 160-167.
Crossref
V. C. Mota, P. J. S. B. Caridade & A. J. C. Varandas. (2012) Ab Initio-Based Global Double Many-Body Expansion Potential Energy Surface for the First 2 A″ Electronic State of NO 2 . The Journal of Physical Chemistry A 116:11, pages 3023-3034.
Crossref
A. J. C. Varandas. (2012) Ab Initio Treatment of Bond-Breaking Reactions: Accurate Course of HO 3 Dissociation and Revisit to Isomerization . Journal of Chemical Theory and Computation 8:2, pages 428-441.
Crossref
S. Joseph & A. J. C. Varandas. (2010) Ab initio Based DMBE Potential Energy Surface for the Ground Electronic State of the C 2 H Molecule . The Journal of Physical Chemistry A 114:7, pages 2655-2664.
Crossref
Y. Z. Song, P. J. S. B. Caridade & A. J. C. Varandas. (2009) Potential Energy Surface for Ground-State H 2 S via Scaling of the External Correlation, Comparison with Extrapolation to Complete Basis Set Limit, and Use in Reaction Dynamics . The Journal of Physical Chemistry A 113:32, pages 9213-9219.
Crossref
S. Joseph & A. J. C. Varandas. (2009) Accurate Double Many-Body Expansion Potential Energy Surface for the Lowest Singlet State of Methylene. The Journal of Physical Chemistry A 113:16, pages 4175-4183.
Crossref
Y. Z. Song & A. J. C. Varandas. (2009) Accurate ab initio double many-body expansion potential energy surface for ground-state H2S by extrapolation to the complete basis set limit . The Journal of Chemical Physics 130:13.
Crossref
A.J.C. Varandas. (2008) An ab initio study of the interaction between He and C36 with extrapolation to the one electron basis set limit. Chemical Physics Letters 463:1-3, pages 225-229.
Crossref
Vinícius C. Mota & António J. C. Varandas. (2008) HN 2 ( 2 A ‘) Electronic Manifold. II. Ab Initio Based Double-Sheeted DMBE Potential Energy Surface via a Global Diabatization Angle . The Journal of Physical Chemistry A 112:16, pages 3768-3786.
Crossref
Erik Abrahamsson, Stefan Andersson, Nikola Marković & Gunnar Nyman. (2008) A new reaction path for the C + NO reaction: dynamics on the 4A″ potential-energy surface. Physical Chemistry Chemical Physics 10:30, pages 4400.
Crossref
Luís P. Viegas, Alexander Alijah & António J. C. Varandas. (2007) Accurate ab initio based multisheeted double many-body expansion potential energy surface for the three lowest electronic singlet states of H3+ . The Journal of Chemical Physics 126:7.
Crossref
A. J. C. Varandas & S. P. J. Rodrigues. (2005) New Double Many-Body Expansion Potential Energy Surface for Ground-State HCN from a Multiproperty Fit to Accurate ab Initio Energies and Rovibrational Calculations. The Journal of Physical Chemistry A 110:2, pages 485-493.
Crossref
Tiao Xie & Joel M. Bowman. (2005) Quantum inelastic scattering study of isotope effects in ozone stabilization dynamics. Chemical Physics Letters 412:1-3, pages 131-134.
Crossref
António J.C. Varandas, Alexander Alijah & Mihail Cernei. (2005) A novel accurate representation of a double-valued potential energy surface by the DMBE method. Application to triplet H3+(). Chemical Physics 308:3, pages 285-295.
Crossref
Emilio Martı́nez-Núñez, Saulo A. Vázquez & Jorge M. C. Marques. (2004) Quasiclassical trajectory study of the collision-induced dissociation of CH3SH++Ar. The Journal of Chemical Physics 121:6, pages 2571-2577.
Crossref
Luis P. Viegas, Mihail Cernei, Alexander Alijah & António J. C. Varandas. (2004) Accurate double many-body expansion potential energy surface for triplet H3+. II. The upper adiabatic sheet (2 3A′). The Journal of Chemical Physics 120:1, pages 253-259.
Crossref
L. A. Poveda & A. J. C. Varandas. (2003) Accurate Single-Valued Double Many-Body Expansion Potential Energy Surface for Ground-State HN 2 . The Journal of Physical Chemistry A 107:39, pages 7923-7930.
Crossref
Mihail Cernei, Alexander Alijah & António J. C. Varandas. (2003) Accurate double many-body expansion potential energy surface for triplet H3+. I. The lowest adiabatic sheet (a3Σu+). The Journal of Chemical Physics 118:6, pages 2637-2646.
Crossref
Wazir-ul H. Ansari & António J. C. Varandas. (2002) Six-Dimensional Energy-Switching Potential Energy Surface for HeHCN. The Journal of Physical Chemistry A 106:40, pages 9338-9344.
Crossref
David Charlo & David C. Clary. (2002) Quantum-mechanical calculations on termolecular association reactions XY+Z+M→XYZ+M: Application to ozone formation. The Journal of Chemical Physics 117:4, pages 1660-1672.
Crossref
A.J.C. Varandas & S.P.J. Rodrigues. (2002) A realistic double many-body expansion potential energy surface for from a multiproperty fit to accurate ab initio energies and vibrational levels. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 58:4, pages 629-647.
Crossref
S. P. J. Rodrigues, J. A. Sabín & A. J. C. Varandas. (2001) Single-Valued Double Many-Body Expansion Potential Energy Surface of Ground-State SO 2 . The Journal of Physical Chemistry A 106:3, pages 556-562.
Crossref
I BorgesJr.Jr., P.J.S.B Caridade & A.J.C Varandas. (2001) Potential Energy Curves for X1Σ+ and A1Π States of CO: The A1Π(v′=1–23)←X1Σ+(v″=0, 1) Transitions. Journal of Molecular Spectroscopy 209:1, pages 24-29.
Crossref
E. Martínez-Núñez & A. J. C. Varandas. (2001) Single-Valued DMBE Potential Energy Surface for HSO:  A Distributed n -Body Polynomial Approach . The Journal of Physical Chemistry A 105:24, pages 5923-5932.
Crossref
M. Boggio-Pasqua, A.I. Voronin, Ph. Halvick & J.-C. Rayez. (2000) Analytical representations of high level ab initio potential energy curves of the C 2 molecule. Journal of Molecular Structure: THEOCHEM 531:1-3, pages 159-167.
Crossref
A. Peña-Gallego, P. E. Abreu & A. J. C. Varandas. (2000) MRCI Calculation, Scaling of the External Correlation, and Modeling of Potential Energy Curves for HCl and OCl. The Journal of Physical Chemistry A 104:26, pages 6241-6246.
Crossref
A.J.C. Varandas, S.P.J. Rodrigues & P.A.J. Gomes. (1998) Energy switching potential energy surfaces and spectra of the van der Waals modes for the ArHCN molecule. Chemical Physics Letters 297:5-6, pages 458-466.
Crossref
P. Jimeno, A.I. Voronin & A.J.C. Varandas. (1998) Ab InitioMRCI Calculation and Modeling of theA1ΠPotential Energy Curve of CO. Journal of Molecular Spectroscopy 192:1, pages 86-90.
Crossref
S. P. J. Rodrigues & A. J. C. Varandas. (1998) Dynamics Study of the Reaction Ar + HCN → Ar + H + CN. The Journal of Physical Chemistry A 102:31, pages 6266-6273.
Crossref
A. J. C. Varandas. (1997) Energy switching approach to potential surfaces. II. Two-valued function for the water molecule. The Journal of Chemical Physics 107:3, pages 867-878.
Crossref
A. J. C. Varandas & S. P. J. Rodrigues. (1997) Double many-body expansion potential energy surface for ground-state HCN based on realistic long range forces and accurate ab initio calculations . The Journal of Chemical Physics 106:23, pages 9647-9658.
Crossref
A.J. C. VARANDAS & H.G. YU. (1997) Double many-body expansion potential energy surface for ground-state HO3. Molecular Physics 91:2, pages 301-318.
Crossref
P. Jimeno, J. C. Rayez, P. E. Abreu & A. J. C. Varandas. (1997) Toward a Single-Valued DMBE Potential Energy Surface for CHNO( 3 A). 1. Diatomic Fragments . The Journal of Physical Chemistry A 101:26, pages 4828-4834.
Crossref
A. J. C. Varandas. (1996) Energy switching approach to potential surfaces: An accurate single-valued function for the water molecule. The Journal of Chemical Physics 105:9, pages 3524-3531.
Crossref
Richard J. Wheatley & William J. Meath. (1996) Dispersion and induction energy damping functions, and their scale with interspecies distance, for the interaction of H− with H, He and Li atoms. Chemical Physics 203:2, pages 209-221.
Crossref
A.J.C. Varandas, A.A.C.C. Pais, J.M.C. Marques & W. Wang. (1996) On the chaperon mechanism for association rate constants: the formation of HO2 and O3. Chemical Physics Letters 249:3-4, pages 264-271.
Crossref
A.J.C. Varandas & S.P.J. Rodrigues. (1995) Internuclear dependence of static dipole polarizability in diatomic molecules. Chemical Physics Letters 245:1, pages 66-74.
Crossref
Ashok K. Dham, A.R. Allnatt, A. Koide & William J. Meath. (1995) Representations of dispersion energy damping functions for interactions of closed shell atoms and molecules. Chemical Physics 196:1-2, pages 81-99.
Crossref
A.J.C. Varandas & A.I. Voronin. (1995) Calculation of the asymptotic interaction and modelling of the potential energy curves of OH and OH+. Chemical Physics 194:1, pages 91-100.
Crossref
A.J.C. Varandas & A.I. Voronin. (1994) Analytical potential energy surfaces for alkali dihalide molecules based on the diatomics-in-molecules formalism. Application to LiF2. Chemical Physics Letters 227:1-2, pages 133-142.
Crossref
Richard J. Wheatley & William J. Meath. (1994) Induction and dispersion damping functions, and their relative scale with interspecies distance, for (H+, He+, Li+)-(H, He, Li) interactions. Chemical Physics 179:3, pages 341-364.
Crossref
Robert Moszynski, Bogumił Jeziorski & Krzysztof Szalewicz. (1992) Many-body symmetry-adapted perturbation theory study of the He⋯F− interaction. Chemical Physics 166:3, pages 329-339.
Crossref
A.J.C. Varandas. (1992) A new formulation of three-body dynamical correlation energy for explicit potential functions. Chemical Physics Letters 194:4-6, pages 333-340.
Crossref
A. J. C. Varandas & A. A. C. C. Pais. 1991. Theoretical and Computational Models for Organic Chemistry. Theoretical and Computational Models for Organic Chemistry 55 78 .
A.J.C. Varandas. (1988) Double many-body expansion of molecular potential energy functions and the role of long-range forces in the rates of chemical reactions. Journal of Molecular Structure: THEOCHEM 166, pages 59-74.
Crossref
R. Ahlrichs, H. J. Böhm, S. Brode, K. T. Tang & J. Peter Toennies. (1988) Interaction potentials for alkali ion–rare gas and halogen ion–rare gas systems. The Journal of Chemical Physics 88:10, pages 6290-6302.
Crossref
A. J. C. Varandas. 1988. Advances in Chemical Physics. Advances in Chemical Physics 255 338 .
A. J. C. Varandas. (2004) The double many‐body expansion of potential energy surfaces from interacting 2 S atoms . International Journal of Quantum Chemistry 32:5, pages 563-574.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.