Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 18, 1988 - Issue 13
119
Views
55
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of 3-Hydroxy-2-Methylene Carbonyl Compounds - Effect of Catalyst and Substrate on Reaction Rate

, , &
Pages 1565-1572 | Published online: 03 Jan 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (3)

G. Jenner. (1999) Comparative high pressure and water effect in the Baylis-Hillman reaction. High Pressure Research 16:4, pages 243-252.
Read now
GregoryH. P. Roos & Pradish Rampersadh. (1993) Temperature and Ultrasound Rate Enhancement in the Baylis-Hillman Reaction. Synthetic Communications 23:9, pages 1261-1266.
Read now
Thavrin Manickum & Gregory Roos. (1991) Stereoselective Addition of Methyl Acrylate to α-Amino Aldehydes. Synthetic Communications 21:22, pages 2269-2274.
Read now

Articles from other publishers (52)

Takumi Noda, Anri Tanaka, Yosuke Akae & Yasuhiro Kohsaka. (2023) Unsaturated polyurethanes degradable by conjugate substitution reactions with amines and carboxylate anions. RSC Advances 13:29, pages 20336-20341.
Crossref
Kapil Kumar & Ravindra K. Rawal. (2020) CuI/DBU‐Mediated MBH Reaction of Isatins: A Convenient Synthesis of 3‐Substituted‐3‐hydroxy‐2‐oxindole. ChemistrySelect 5:10, pages 3048-3051.
Crossref
Rasmus A. T. Verdier, Jesper H. Mikkelsen & Anders T. Lindhardt. (2018) Studying the Morita-Baylis-Hillman Reaction in Continuous Flow Using Packed Bed Reactors. Organic Process Research & Development 22:11, pages 1524-1533.
Crossref
Corentin Rasson, Adrien Stouse, Arnaud Boreux, Virginie Cirriez & Olivier Riant. (2018) Copper‐Catalyzed One‐Pot Borylative Aldolisation β‐Fluoride Elimination for the Formal Addition of Acrylates to Carbonyl Moieties. Chemistry – A European Journal 24:37, pages 9234-9237.
Crossref
Lluís Raich, Hugo Santos, Juliana C. Gomes, Manoel T. RodriguesJr.Jr., Renan Galaverna, Marcos N. Eberlin, Fernando Coelho, Carme Rovira & Albert Moyano. (2018) Can an Alcohol Act As an Acid/Base Catalyst in Water Solution? An Experimental and Theoretical Study of Imidazole Catalysis of the Aqueous Morita–Baylis–Hillman Reaction. ACS Catalysis 8:3, pages 1703-1714.
Crossref
Marilia S. Santos, José Tiago M. Correia, Ana Paula L. Batista, Manoel T. Rodrigues, Ataualpa A. C. Braga, Marcos N. Eberlin & Fernando Coelho. 2016. Lewis Base Catalysis in Organic Synthesis. Lewis Base Catalysis in Organic Synthesis 191 232 .
Sanhu Zhao, Meiyan He, Zhaonan Guo, Na Zhou, Dou Wang, Jinlong Li & Liwei Zhang. (2015) [HyEtPy]Cl–H 2 O: an efficient and versatile solvent system for the DABCO-catalyzed Morita–Baylis–Hillman reaction . RSC Advances 5:41, pages 32839-32845.
Crossref
Hong-Yong Kim, Wen-Chung Shieh & Mahavir Prashad. (2014) 3-Quinuclidinol as a nucleophilic catalyst for the cyanation of 2-chloropyrimidines. Tetrahedron Letters 55:36, pages 5055-5057.
Crossref
Alexey V. Salin, Albert R. Fatkhutdinov, Anton V. Il'in & Vladimir I. Galkin. (2014) Effect of Anchimeric Assistance in the Reaction of Triphenylphosphine with α,β‐Unsaturated Carboxylic Acids. International Journal of Chemical Kinetics 46:4, pages 206-215.
Crossref
Liang Dong, Jun Wen, Song Qin, Na Yang, Huaqing Yang, Zhishan Su, Xiaoqi Yu & Changwei Hu. (2012) Iron-Catalyzed Direct Suzuki–Miyaura Reaction: Theoretical and Experimental Studies on the Mechanism and the Regioselectivity. ACS Catalysis 2:8, pages 1829-1837.
Crossref
Sanhao Ji, Bernd Bruchmann & Harm‐Anton Klok. (2011) Exploring the Scope of the Baylis–Hillman Reaction for the Synthesis of Side‐Chain Functional Polyesters. Macromolecular Chemistry and Physics 212:24, pages 2612-2618.
Crossref
Sanhao Ji, Bernd Bruchmann & Harm-Anton Klok. (2011) Synthesis of Side-Chain Functional Polyesters via Baylis–Hillman Polymerization. Macromolecules 44:13, pages 5218-5226.
Crossref
Min Shi, Feijun Wang, Mei-Xin Zhao & Yin WeiMei-Xin Zhao, Yin Wei & Min Shi. 2011. The Chemistry of the Morita-Baylis-Hillman Reaction. The Chemistry of the Morita-Baylis-Hillman Reaction 79 208 .
Min Shi, Feijun Wang, Mei-Xin Zhao & Yin WeiMei-Xin Zhao, Yin Wei & Min Shi. 2011. The Chemistry of the Morita-Baylis-Hillman Reaction. The Chemistry of the Morita-Baylis-Hillman Reaction 1 78 .
Javier Mansilla & José M. Saá. (2010) Enantioselective, Organocatalytic Morita-Baylis-Hillman and Aza-Morita-Baylis-Hillman Reactions: Stereochemical Issues. Molecules 15:2, pages 709-734.
Crossref
Liang Dong, Song Qin, Zhishan Su, Huaqing Yang & Changwei Hu. (2010) Computational investigation on the mechanism and the stereoselectivity of Morita–Baylis–Hillman reaction and the effect of the bifunctional catalyst N-methylprolinol. Organic & Biomolecular Chemistry 8:17, pages 3985.
Crossref
Ying Song, Haihua Ke, Nan Wang, Limin Wang & Gang Zou. (2009) Baylis–Hillman reaction promoted by a recyclable protic-ionic-liquid solvent–catalyst system: DABCO–AcOH–H2O. Tetrahedron 65:45, pages 9086-9090.
Crossref
Kengo Shigetomi, Takao Kishimoto, Kazuaki Shoji & Makoto Ubukata. (2008) First total synthesis of 6-tuliposide B. Tetrahedron: Asymmetry 19:12, pages 1444-1449.
Crossref
Abigail G. Doyle & Eric N. Jacobsen. (2007) Small-Molecule H-Bond Donors in Asymmetric Catalysis. Chemical Reviews 107:12, pages 5713-5743.
Crossref
Ciarán Ó Dálaigh & Stephen J. Connon. (2007) Nonenzymatic Acylative Kinetic Resolution of Baylis−Hillman Adducts. The Journal of Organic Chemistry 72:18, pages 7066-7069.
Crossref
Cathy Kar‐Wing Kwong, Rui Huang, Minjuan Zhang, Min Shi & Patrick H. Toy. (2007) Bifunctional Polymeric Organocatalysts and Their Application in the Cooperative Catalysis of Morita–Baylis–Hillman Reactions. Chemistry – A European Journal 13:8, pages 2369-2376.
Crossref
. (2007) An Efficient Synthesis of an Apoptosis Inducer, F-3-2-5 by Using Octanol-Accelerated Baylis-Hillman Reaction. Bulletin of the Korean Chemical Society 28:2, pages 179-180.
Crossref
San-Hu Zhao, Hai-Rong Zhang, Li-Heng Feng & Zhao-Bin Chen. (2006) Pyridinium ionic liquids-accelerated amine-catalyzed Morita–Baylis–Hillman reaction. Journal of Molecular Catalysis A: Chemical 258:1-2, pages 251-256.
Crossref
Xueling Mi, Sanzhong Luo, Hui Xu, Long Zhang & Jin-Pei Cheng. (2006) Hydroxyl ionic liquid (HIL)-immobilized quinuclidine for Baylis–Hillman catalysis: synergistic effect of ionic liquids as organocatalyst supports. Tetrahedron 62:11, pages 2537-2544.
Crossref
Makoto Ubukata, Kengo Shigetomi, Takao Kishimoto & Kazuaki Shoji. (2006) Synthesis of Tulipalin B and 1-O-Methyl-6-tuliposide B. HETEROCYCLES 69:1, pages 63.
Crossref
Min Shi & Wen Zhang. (2005) Organocatalysts of tertiary-phosphines and amines catalyzed reactions of α-keto esters with cyclopent-2-enone. Tetrahedron 61:50, pages 11887-11894.
Crossref
Cornelia Faltin, Eimear M. Fleming & Stephen J. Connon. (2004) Acrylamide in the Baylis−Hillman Reaction:  Expanded Reaction Scope and the Unexpected Superiority of DABCO over More Basic Tertiary Amine Catalysts. The Journal of Organic Chemistry 69:19, pages 6496-6499.
Crossref
Nolan T. McDougal, Whitney L. Trevellini, Stacy A. Rodgen, Laura T. Kliman & Scott E. Schaus. (2004) The Development of the Asymmetric Morita—Baylis—Hillman Reaction Catalyzed by Chiral Brønsted Acids. Advanced Synthesis & Catalysis 346:9-10, pages 1231-1240.
Crossref
Palakodety Radha Krishna, A. Manjuvani, V. Kannan & G.V.M. Sharma. (2004) Sulpholane––A new solvent for the Baylis–Hillman reaction. Tetrahedron Letters 45:6, pages 1183-1185.
Crossref
Declan J. Maher & Stephen J. Connon. (2004) Acceleration of the DABCO-promoted Baylis–Hillman reaction using a recoverable H-bonding organocatalyst. Tetrahedron Letters 45:6, pages 1301-1305.
Crossref
Deevi Basavaiah, Anumolu Jaganmohan Rao & Tummanapalli Satyanarayana. (2003) Recent Advances in the Baylis−Hillman Reaction and Applications. Chemical Reviews 103:3, pages 811-892.
Crossref
Eun Jin Kim, Soo Y. Ko & Choong Eui Song. (2003) Acceleration of the Baylis–Hillman Reaction in the Presence of Ionic Liquids . Helvetica Chimica Acta 86:3, pages 894-899.
Crossref
Peter Longer. 2003. Organic Synthesis Set. Organic Synthesis Set 165 177 .
Peter Langer. 2003. Organic Synthesis Highlights V. Organic Synthesis Highlights V 165 177 .
Yujiro Hayashi, Kotaro Okado, Itaru Ashimine & Mitsuru Shoji. (2002) The Baylis–Hillman reaction under high pressure induced by water-freezing. Tetrahedron Letters 43:48, pages 8683-8686.
Crossref
Richard S. Grainger, Nicholas E. Leadbeater & Anna Masdéu Pàmies. (2002) The tetramethylguanidine catalyzed Baylis–Hillman reaction: Effects of co-catalysts and alcohol solvents on reaction rate. Catalysis Communications 3:10, pages 449-452.
Crossref
Daniela Balan & Hans Adolfsson. (2002) Titanium Isopropoxide as Efficient Catalyst for the Aza-Baylis−Hillman Reaction. Selective Formation of α-Methylene-β-amino Acid Derivatives. The Journal of Organic Chemistry 67:7, pages 2329-2334.
Crossref
Daniela Balan & Hans Adolfsson. (2001) Selective Formation of α-Methylene-β-amino acid Derivatives through the Aza Version of the Baylis−Hillman Reaction. The Journal of Organic Chemistry 66:19, pages 6498-6501.
Crossref
Ellen M. Leahy, Yu Chen & Pauline Chiu. 2001. Encyclopedia of Reagents for Organic Synthesis. Encyclopedia of Reagents for Organic Synthesis 1 3 .
Ellen M. Leahy. 2001. Encyclopedia of Reagents for Organic Synthesis. Encyclopedia of Reagents for Organic Synthesis.
Reinhard Räcker, Klaus Döring & Oliver Reiser. (2000) Combinatorial Liquid-Phase Synthesis of [1,4]Oxazepine-7-ones via the Baylis−Hillman Reaction. The Journal of Organic Chemistry 65:21, pages 6932-6939.
Crossref
Peter Langer. (2000) New Strategies for the Development of an Asymmetric Version of the Baylis–Hillman Reaction. Angewandte Chemie 39:17, pages 3049-3052.
Crossref
Peter Langer. (2000) Neue Strategien zur Entwicklung einer asymmetrischen Variante der Baylis-Hillman-Reaktion. Angewandte Chemie 112:17, pages 3177-3180.
Crossref
Wenge Li, Zhaoguo Zhang, Dengming Xiao & Xumu Zhang. (2000) Synthesis of Chiral Hydroxyl Phospholanes from d -mannitol and Their Use in Asymmetric Catalytic Reactions . The Journal of Organic Chemistry 65:11, pages 3489-3496.
Crossref
Yoshiharu Iwabuchi, Mari Nakatani, Nobiko Yokoyama & Susumi Hatakeyama. (1999) Chiral Amine-Catalyzed Asymmetric Baylis − Hillman Reaction:  A Reliable Route to Highly Enantiomerically Enriched (α-Methylene-β-hydroxy)esters . Journal of the American Chemical Society 121:43, pages 10219-10220.
Crossref
Engelbert Ciganek. 2004. Organic Reactions. Organic Reactions 201 350 .
Jeffrey W. Stansbury, Da-Wei Liu & Sonia I. Kim. (1997) Polymer-Supported Quinuclidinyl Catalysts for Synthesis of Cyclopolymerizable Monomers via the Aldehyde−Acrylate Coupling Reaction † . Macromolecules 30:16, pages 4540-4543.
Crossref
István E. Marko, Paul R. Giles & Nigel J. Hindley. (1997) Catalytic enantioselective Baylis-Hillman reactions. Correlation between pressure and enantiomeric excess. Tetrahedron 53:3, pages 1015-1024.
Crossref
Deevi Basavaiah, Polisetti Dharma Rao & Rachakonda Suguna Hyma. (1996) The Baylis-Hillman reaction: A novel carbon-carbon bond forming reaction. Tetrahedron 52:24, pages 8001-8062.
Crossref
Siegfried E. Drewes, Neville D. Emslie, Nazira Karodia & Abdullah A. Khan. (2006) Facile Diastereoselective Synthesis of 2,6‐Dialkyl‐5‐methylene‐1,3‐dioxan‐4‐ones via α‐Activated Vinyl Esters. Chemische Berichte 123:6, pages 1447-1448.
Crossref
Mark Bailey, István E. Markó, W.David Ollis & Poul R. Rasmussen. (1990) Stereoselective epoxidation of hydroxyenones. The synthesis of the sidechain of clerocidin. Tetrahedron Letters 31:31, pages 4509-4512.
Crossref
S. E. DREWES, S. D. FREESE, N. D. EMSLIE & G. H. P. ROOS. (2016) ChemInform Abstract: Synthesis of 3‐Hydroxy‐2‐methylene Carbonyl Compounds. Effects of Catalyst and Substrate on Reaction Rate.. ChemInform 20:13.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.