370
Views
70
CrossRef citations to date
0
Altmetric
Original Articles

Transmission electron microscopy observations and micromechanical/continuum models for the effect of hydrogen on the mechanical behaviour of metals

&
Pages 3405-3413 | Published online: 04 Aug 2009

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

Sandra Korte-Kerzel, Tilmann Hickel, Liam Huber, Dierk Raabe, Stefanie Sandlöbes-Haut, Mira Todorova & Jörg Neugebauer. (2022) Defect phases – thermodynamics and impact on material properties. International Materials Reviews 67:1, pages 89-117.
Read now
Akinobu Shibata, Yuji Momotani, Tamotsu Murata, Takahiro Matsuoka, Mizuki Tsuboi & Nobuhiro Tsuji. (2017) Microstructural and crystallographic features of hydrogen-related fracture in lath martensitic steels. Materials Science and Technology 33:13, pages 1524-1532.
Read now
H. Fuchigami , H. Minami & M. Nagumo . (2006) Effect of grain size on the susceptibility of martensitic steel to hydrogen-related failure. Philosophical Magazine Letters 86:1, pages 21-29.
Read now
M. Nagumo. (2004) Hydrogen related failure of steels – a new aspect. Materials Science and Technology 20:8, pages 940-950.
Read now
C. Q. Chen, S. X. Li & K. Lu. (2004) Dislocation interaction with hydrides in titanium containing a low hydrogen concentration. Philosophical Magazine 84:1, pages 29-43.
Read now

Articles from other publishers (65)

Luying Zhang, Qingzhe Zhang, Peng Jiang, Ying Liu, Chen Zhao & Yuhang Dong. (2024) Effects of Alloying Element on Hydrogen Adsorption and Diffusion on α-Fe(110) Surfaces: First Principles Study. Metals 14:5, pages 487.
Crossref
Qidong Li, Hesamedin Ghadiani, Vahid Jalilvand, Tahrim Alam, Zoheir Farhat & Md. Islam. (2024) Hydrogen Impact: A Review on Diffusibility, Embrittlement Mechanisms, and Characterization. Materials 17:4, pages 965.
Crossref
C. Nowak, X.W. Zhou & R.B. Sills. (2024) Validating continuum theory for Cottrell atmosphere solute drag by molecular dynamics simulations. Journal of the Mechanics and Physics of Solids 183, pages 105514.
Crossref
Jiding Zhang, Keke Zhao, Hongda Yang, Yue Sheng & Xiaoyu Jiang. (2024) Discrete distribution dislocation study on fracture behavior of nanocrystalline materials in the hydrogen environment. Engineering Failure Analysis 156, pages 107788.
Crossref
V.G. Gavriljuk, V.M. Shyvaniuk & S.M. Teus. (2024) Hydrogen-dislocation interaction in relation to hydrogen embrittlement and enhanced plasticity of metals. International Journal of Hydrogen Energy 50, pages 352-360.
Crossref
Kai Zhao, Fan Zhao, Qi Lin, Xiangdong Li, Jingping Xiao, Yunjun Gu & Qifeng Chen. (2023) Effect of loading rate on the dislocation emission from crack-tip under hydrogen environment. Materials Today Communications 37, pages 107269.
Crossref
Alfonso Monzamodeth Román-Sedano, Bernardo Campillo, Julio C. Villalobos, Fermín Castillo & Osvaldo Flores. (2023) Hydrogen Diffusion in Nickel Superalloys: Electrochemical Permeation Study and Computational AI Predictive Modeling. Materials 16:20, pages 6622.
Crossref
Dayong An, Yuhao Zhou, Yao Xiao, Xinxi Liu, Xifeng Li & Jun Chen. (2022) Observation of the Hydrogen-Dislocation Interactions in a High-Manganese Steel after Hydrogen Adsorption and Desorption. Acta Metallurgica Sinica (English Letters) 36:7, pages 1105-1112.
Crossref
Chao-Ming Wang, Lian-Ji Zhang, Ying-Jie Ma, Shang-Zhou Zhang, Rui Yang & Qing-Miao Hu. (2023) Hydrogen-surface interaction from first-principles calculations and its implication to hydrogen embrittlement mechanisms of titanium. Applied Surface Science 621, pages 156871.
Crossref
Marcel Wetegrove, Maria Jazmin Duarte, Klaus Taube, Martin Rohloff, Hariprasad Gopalan, Christina Scheu, Gerhard Dehm & Angela Kruth. (2023) Preventing Hydrogen Embrittlement: The Role of Barrier Coatings for the Hydrogen Economy. Hydrogen 4:2, pages 307-322.
Crossref
Lixia Zhu, Jinheng Luo, Shunli Zheng, Shuaijun Yang, Jun Hu & Zhong Chen. (2023) Understanding hydrogen diffusion mechanisms in doped α-Fe through DFT calculations. International Journal of Hydrogen Energy 48:46, pages 17703-17710.
Crossref
Jiaxing Liu, Mingjiu Zhao & Lijian Rong. (2023) Overview of hydrogen-resistant alloys for high-pressure hydrogen environment: on the hydrogen energy structural materials. Clean Energy 7:1, pages 99-115.
Crossref
Xu Lu, Yan Ma, Ding Peng, Roy Johnsen & Dong Wang. (2023) In situ nanomechanical characterization of hydrogen effects on nickel-based alloy 725 under different metallurgical conditions. Journal of Materials Science & Technology 135, pages 156-169.
Crossref
Dae Geon Lee, Ji Hoon Kim, Seong Hoon Kim, Heon Young Ha, Tae Ho Lee, Joonoh Moon & Dong-Woo Suh. (2022) Hydrogen Trapping Characteristics and Mechanical Degradation in a Duplex Stainless Steel. Metals and Materials International 29:1, pages 126-134.
Crossref
Jiding Zhang, Yue Sheng, Hongda Yang, Wentao Ma & Xiaoyu Jiang. (2022) Crystal crack dislocation model in the hydrogen environment. Engineering Fracture Mechanics 270, pages 108587.
Crossref
Huabing Li, Zhilin Zheng, Jing He, Akihide Nagao, Qingqing Sun & Shuai Wang. (2022) Dislocation evolution in copper in the absence and presence of hydrogen. Materials Science and Engineering: A 842, pages 143082.
Crossref
Akinobu Shibata, Ivan Gutierrez-Urrutia, Kazuho Okada, Goro Miyamoto, Yazid Madi, Jacques Besson & Kaneaki Tsuzaki. (2022) Relationship between mechanical response and microscopic crack propagation behavior of hydrogen-related intergranular fracture in as-quenched martensitic steel. Materials Science and Engineering: A 831, pages 142288.
Crossref
V. G. Gavriljuk, V. M. Shyvaniuk & S. M. TeusV. G. Gavriljuk, V. M. Shyvaniuk & S. M. Teus. 2022. Hydrogen in Engineering Metallic Materials. Hydrogen in Engineering Metallic Materials 201 274 .
Ivaylo Katzarov, Nevena Ilieva & Ludmil Drenchev. 2022. Large-Scale Scientific Computing. Large-Scale Scientific Computing 132 139 .
Shuang Liang, Yaxin Zhu, Minsheng Huang, Lv Zhao & Zhenhuan Li. (2021) Key role of interaction between dislocations and hydrogen-vacancy complexes in hydrogen embrittlement of aluminum: discrete dislocation plasticity analysis. Modelling and Simulation in Materials Science and Engineering 29:6, pages 065003.
Crossref
Dong Wang, Anette Brocks Hagen, Di Wan, Xu Lu & Roy Johnsen. (2021) Probing hydrogen effect on nanomechanical properties of X65 pipeline steel using in-situ electrochemical nanoindentation. Materials Science and Engineering: A 824, pages 141819.
Crossref
Theodore Zirkle, Luke Costello & David L. McDowell. (2021) Crystal Plasticity Modeling of Hydrogen and Hydrogen-Related Defects in Initial Yield and Plastic Flow of Single-Crystal Stainless Steel 316L. Metallurgical and Materials Transactions A 52:9, pages 3961-3977.
Crossref
M. J. Duarte, X. Fang, J. Rao, W. Krieger, S. Brinckmann & G. Dehm. (2021) In situ nanoindentation during electrochemical hydrogen charging: a comparison between front-side and a novel back-side charging approach. Journal of Materials Science 56:14, pages 8732-8744.
Crossref
Zheng Wang, Xiaoming Shi, Xu-Sheng Yang, Zhuhong Liu, San-Qiang Shi & Xingqiao Ma. (2020) The Effects of Hydrogen Distribution on the Elastic Properties and Hydrogen-Induced Hardening and Softening of α-Fe. Applied Sciences 10:24, pages 8958.
Crossref
Chuanshi Huang & Xiaosheng Gao. (2020) Phase field modeling of hydrogen embrittlement. International Journal of Hydrogen Energy 45:38, pages 20053-20068.
Crossref
Peng Gong, Ivaylo H. Katzarov, John Nutter, Anthony T. Paxton & W. Mark Rainforth. (2020) The influence of hydrogen on plasticity in pure iron—theory and experiment. Scientific Reports 10:1.
Crossref
Akinobu Shibata, Masanori Enoki, Nahoko Saji, Hirotaka Tai, Motomichi Koyama, Hiroshi Ohtani, Nobuhiro Tsuji & Kaneaki Tsuzaki. (2019) Effect of Hydrogen on the Substructure of Lenticular Martensite in Fe-31Ni Alloy. Metallurgical and Materials Transactions A 50:9, pages 4027-4036.
Crossref
Y.D. Han, R.Z. Wang, H. Wang & L.Y. Xu. (2019) Hydrogen embrittlement sensitivity of X100 pipeline steel under different pre-strain. International Journal of Hydrogen Energy 44:39, pages 22380-22393.
Crossref
Ali Tehranchi & William A. Curtin. (2019) The role of atomistic simulations in probing hydrogen effects on plasticity and embrittlement in metals. Engineering Fracture Mechanics 216, pages 106502.
Crossref
May L. Martin, Mohsen Dadfarnia, Akihide Nagao, Shuai Wang & Petros Sofronis. (2019) Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials. Acta Materialia 165, pages 734-750.
Crossref
Douglas E. Spearot, Rémi Dingreville & Christopher J. O’Brien. 2019. Handbook of Mechanics of Materials. Handbook of Mechanics of Materials 357 390 .
Shinya Taketomi & Ryosuke Matsumoto. 2019. Handbook of Mechanics of Materials. Handbook of Mechanics of Materials 283 300 .
Frances M. Ross & Andrew M. Minor. 2019. Springer Handbook of Microscopy. Springer Handbook of Microscopy 101 187 .
Douglas E. Spearot, Rémi Dingreville & Christopher J. O’Brien. 2018. Handbook of Mechanics of Materials. Handbook of Mechanics of Materials 1 34 .
Shinya Taketomi & Ryosuke Matsumoto. 2018. Handbook of Mechanics of Materials. Handbook of Mechanics of Materials 1 18 .
Eun Ju Song, Seung-Wook Baek, Seung Hoon Nahm & Un Bong Baek. (2017) Notched-tensile properties under high-pressure gaseous hydrogen: Comparison of pipeline steel X70 and austenitic stainless type 304L, 316L steels. International Journal of Hydrogen Energy 42:12, pages 8075-8082.
Crossref
A. Tehranchi & W.A. Curtin. (2017) Atomistic study of hydrogen embrittlement of grain boundaries in nickel: I. Fracture. Journal of the Mechanics and Physics of Solids 101, pages 150-165.
Crossref
G.P.M. Leyson, Blazej Grabowski & Jörg Neugebauer. (2016) Multiscale modeling of hydrogen enhanced homogeneous dislocation nucleation. Acta Materialia 107, pages 144-151.
Crossref
H.F. Zhang, B.D. Yao, J.Y. Zhang, Q. Xu, Y.J. Feng & Y.X. Wang. (2016) The tolerance of Ti3SiC2 to hydrogen-induced embrittlement: A first principles calculation. Materials Letters 166, pages 93-96.
Crossref
Yiliang You, Quanquan Teng, Zheng Zhang & Qunpeng Zhong. (2016) The effect of hydrogen on the deformation mechanisms of 2.25Cr–1Mo low alloy steel revealed by acoustic emission. Materials Science and Engineering: A 655, pages 277-282.
Crossref
Akinobu Shibata, Tamotsu Murata, Hiroshi Takahashi, Takahiro Matsuoka & Nobuhiro Tsuji. (2015) Characterization of Hydrogen-Related Fracture Behavior in As-Quenched Low-Carbon Martensitic Steel and Tempered Medium-Carbon Martensitic Steel. Metallurgical and Materials Transactions A 46:12, pages 5685-5696.
Crossref
R.J. Zamora, K.L. Baker & D.H. Warner. (2015) Illuminating the chemo-mechanics of hydrogen enhanced fatigue crack growth in aluminum alloys. Acta Materialia 100, pages 232-239.
Crossref
G.P.M. Leyson, Blazej Grabowski & Jörg Neugebauer. (2015) Multiscale description of dislocation induced nano-hydrides. Acta Materialia 89, pages 50-59.
Crossref
Xu Zhang & Gang Lu. 2015. Molecular Modeling of Corrosion Processes. Molecular Modeling of Corrosion Processes 223 249 .
Baber Saleem & Hongbiao Dong. (2015) Phase Characterization of CRA Fastener INCONEL718 in Relation of Hydrogen Assisted Cracking. Materials Today: Proceedings 2, pages S383-S392.
Crossref
Mao Wen, Zhiyuan Li & Afrooz Barnoush. (2013) Atomistic Study of Hydrogen Effect on Dislocation Nucleation at Crack Tip. Advanced Engineering Materials 15:11, pages 1146-1151.
Crossref
Jun Song & W. A. Curtin. (2012) Atomic mechanism and prediction of hydrogen embrittlement in iron. Nature Materials 12:2, pages 145-151.
Crossref
Dominique François, André Pineau & André ZaouiDominique François, André Pineau & André Zaoui. 2013. Mechanical Behaviour of Materials. Mechanical Behaviour of Materials 363 406 .
Motohiro Yuasa, Takashi Amemiya & Mamoru Mabuchi. (2012) Enhanced grain boundary embrittlement of an Fe grain boundary segregated by hydrogen (H). Journal of Materials Research 27:12, pages 1589-1597.
Crossref
Mao Wen & Zhiyuan Li. (2012) Thermally activated process of homogeneous dislocation nucleation and hydrogen effects: An atomistic study. Computational Materials Science 54, pages 28-31.
Crossref
I.M. Robertson, M.L. Martin & J.A. Fenske. 2012. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies 166 206 .
W. Dietzel, A. Atrens & A. Barnoush. 2012. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies 237 273 .
F. Apostol & Y. Mishin. (2011) Hydrogen effect on shearing and cleavage of Al: A first-principles study. Physical Review B 84:10.
Crossref
Jun Song & W.A. Curtin. (2011) A nanoscale mechanism of hydrogen embrittlement in metals. Acta Materialia 59:4, pages 1557-1569.
Crossref
Hiroyuki Hirakata, Takeshi Yamada, Yoshiki Nobuhara, Akio Yonezu & Kohji Minoshima. (2010) Hydrogen effect on fracture toughness of thin film/substrate interfaces. Engineering Fracture Mechanics 77:5, pages 803-818.
Crossref
V.K. Gupta & S.R. Agnew. (2008) Measuring the effect of environment on fatigue crack-wake plasticity in aluminum alloy 2024 using electron backscatter diffraction. Materials Science and Engineering: A 494:1-2, pages 36-46.
Crossref
YunJo Ro, Sean R. Agnew & Richard P. Gangloff. (2008) Environmental Fatigue-Crack Surface Crystallography for Al-Zn-Cu-Mg-Mn/Zr. Metallurgical and Materials Transactions A 39:6, pages 1449-1465.
Crossref
Ian M. Robertson, Paulo J. Ferreira, Gerhard Dehm, Robert Hull & Eric A. Stach. (2011) Visualizing the Behavior of Dislocations—Seeing is Believing. MRS Bulletin 33:2, pages 122-131.
Crossref
C. Borchers, T. Michler & A. Pundt. (2008) Effect of Hydrogen on the Mechanical Properties of Stainless Steels. Advanced Engineering Materials 10:1-2, pages 11-23.
Crossref
YunJo Ro, Sean R. Agnew & Richard P. Gangloff. (2007) Crystallography of Fatigue Crack Propagation in Precipitation-Hardened Al-Cu-Mg/Li. Metallurgical and Materials Transactions A 38:12, pages 3042-3062.
Crossref
Sharvan Kumar & William A. Curtin. (2007) Crack interaction with microstructure. Materials Today 10:9, pages 34-44.
Crossref
Gouenou Girardin & David Delafosse. (2004) Measurement of the saturated dislocation pinning force in hydrogenated nickel and nickel base alloys. Scripta Materialia 51:12, pages 1177-1181.
Crossref
D.E. Jiang & Emily A. Carter. (2004) First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals. Acta Materialia 52:16, pages 4801-4807.
Crossref
Xinqiang Wu, Yasuyuki Katada, In S. Kim & Sang G. Lee. (2004) Hydrogen-involved tensile and cyclic deformation behavior of low-alloy pressure vessel steel. Metallurgical and Materials Transactions A 35:5, pages 1477-1486.
Crossref
Michihiko NAGUMO. (2004) Effects of Hydrogen on Mechanical Behavior of Steels. Tetsu-to-Hagane 90:10, pages 766-775.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.