417
Views
63
CrossRef citations to date
0
Altmetric
Original Articles

Function of hydrogen in intergranular fracture of martensitic steels

&
Pages 3415-3425 | Published online: 04 Aug 2009

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (5)

Katsutoshi Takashima, Ruoyu Han, Ken’ichi Yokoyama & Yoshimasa Funakawa. (2022) Continuousness of interactions between hydrogen and plastic deformation of ultra-high strength steel sheet consisting of ferrite and nanometer-sized precipitates. Philosophical Magazine Letters 102:10, pages 324-334.
Read now
Michihiko Nagumo & Kenichi Takai. (2020) Critical Assessment 38: Assessment of the intrinsic susceptibility to hydrogen embrittlement for qualification of steels. Materials Science and Technology 36:10, pages 1003-1011.
Read now
Akinobu Shibata, Yuji Momotani, Tamotsu Murata, Takahiro Matsuoka, Mizuki Tsuboi & Nobuhiro Tsuji. (2017) Microstructural and crystallographic features of hydrogen-related fracture in lath martensitic steels. Materials Science and Technology 33:13, pages 1524-1532.
Read now
H. Fuchigami , H. Minami & M. Nagumo . (2006) Effect of grain size on the susceptibility of martensitic steel to hydrogen-related failure. Philosophical Magazine Letters 86:1, pages 21-29.
Read now
M. Nagumo. (2004) Hydrogen related failure of steels – a new aspect. Materials Science and Technology 20:8, pages 940-950.
Read now

Articles from other publishers (58)

Kota Tomatsu, Tomohiko Omura, Takahiro Aoki, Atsushi Yabuuchi & Atsushi Kinomura. (2023) Lattice Defects Underneath Hydrogen-induced Intergranular Fracture Surface of Ni-Cr Alloy Evaluated by Low-energy Positron Beam. ISIJ International 63:11, pages 1889-1896.
Crossref
Kazuki Okuno & Kenichi Takai. (2023) Extraction of reversible hydrogen trapped on prior austenite grain boundaries and promoting intergranular fracture in the elastic region of tempered martensitic steel by utilizing frozen-in hydrogen distribution at -196 °C. Acta Materialia 259, pages 119291.
Crossref
Kazuho Okada, Akinobu Shibata & Nobuhiro Tsuji. (2023) Characteristics and formation mechanism of serrated markings on the hydrogen-related quasi-cleavage fracture in as quenched low-carbon martensitic steel. Scripta Materialia 234, pages 115568.
Crossref
Stefanie Pichler, Artenis Bendo, Gregor Mori, Mahdieh Safyari & Masoud Moshtaghi. (2023) Inhibition of grain growth by pearlite improves hydrogen embrittlement susceptibility of the ultra-low carbon ferritic steel: the influence of H-assisted crack initiation and propagation mechanisms. Journal of Materials Science 58:33, pages 13460-13475.
Crossref
Satoshi Mitomi, Hideaki Iwaoka & Shoichi Hirosawa. (2023) Hydrogen Embrittlement Mechanism of Ultrafine-grained Iron with Different Grain Sizes. ISIJ International 63:6, pages 1096-1106.
Crossref
Akinobu ShibataYazid Madi, Jacques Besson, Akiko NakamuraTaku MoronagaKazuho OkadaIvan Gutierrez-UrrutiaToru Hara. (2023) Relationship between three-dimensional crack morphology and macroscopic mechanical properties of hydrogen-related fracture in martensitic steel. ISIJ International.
Crossref
Takahiro Chiba, Tetsushi Chida, Tomohiko Omura, Daisuke Hirakami & Kenichi Takai. (2023) Preparation of an overall intergranular fracture surface caused by hydrogen and identification of lattice defects present in the local area just below the surface of tempered martensitic steel. Scripta Materialia 223, pages 115072.
Crossref
Michihiko NagumoMichihiko Nagumo. 2023. Fundamentals of Hydrogen Embrittlement. Fundamentals of Hydrogen Embrittlement 205 243 .
Michihiko NagumoMichihiko Nagumo. 2023. Fundamentals of Hydrogen Embrittlement. Fundamentals of Hydrogen Embrittlement 171 204 .
Kazuho Okada, Akinobu Shibata, Hisashi Matsumiya & Nobuhiro Tsuji. (2022) Origin of Serrated Markings on the Hydrogen Related Quasi-cleavage Fracture in Low-carbon Steel with Ferrite Microstructure. ISIJ International 62:10, pages 2081-2088.
Crossref
Y.H. Fan, H.L. Zhao, K.R. Weng, C. Ma, H.X. Yang, X.L. Dong, C.W. Guo & Y.G. Li. (2022) The role of delta ferrite in hydrogen embrittlement fracture of 17-4 PH stainless steel. International Journal of Hydrogen Energy 47:79, pages 33883-33890.
Crossref
Akinobu SHIBATA. (2022) Hydrogen-related Fracture in Martensitic Steelsマルテンサイト鋼の水素ぜい性破壊. Journal of the Society of Materials Science, Japan 71:8, pages 672-677.
Crossref
L. Cupertino Malheiros, A. Oudriss, S. Cohendoz, J. Bouhattate, F. Thébault, M. Piette & X. Feaugas. (2022) Local fracture criterion for quasi-cleavage hydrogen-assisted cracking of tempered martensitic steels. Materials Science and Engineering: A 847, pages 143213.
Crossref
Tingshu Chen, Takahiro Chiba, Motomichi Koyama, Eiji Akiyama & Kenichi Takai. (2022) Factors Distinguishing Hydrogen-Assisted Intergranular and Intergranular-Like Fractures in a Tempered Lath Martensitic Steel. Metallurgical and Materials Transactions A 53:5, pages 1645-1658.
Crossref
Tomoka Homma, Takahiro Chiba, Kenichi Takai, Eiji Akiyama, Wataru Oshikawa & Michihiko Nagumo. (2022) Cracking Process in Delayed Fracture of High-Strength Steel after Long Atmospheric Exposure. ISIJ International 62:4, pages 776-787.
Crossref
Sang-Hyun Yu, Hyun-Bin Jeong, Jae-Seung Lee & Young-Kook Lee. (2022) Micro-axial cracking in unnotched, cold-drawn pearlitic steel wire: Mechanism and beneficial effect on the resistance to hydrogen embrittlement. Acta Materialia 225, pages 117567.
Crossref
Kazuho Okada, Akinobu Shibata, Wu Gong & Nobuhiro Tsuji. (2022) Effect of hydrogen on evolution of deformation microstructure in low-carbon steel with ferrite microstructure. Acta Materialia 225, pages 117549.
Crossref
Satoshi Mitomi, Hideaki Iwaoka & Shoichi Hirosawa. (2022) Hydrogen Embrittlement Mechanism of Ultrafine-grained Iron with Different Grain Sizes異なる結晶粒径をもつ超微細粒鉄の水素脆化機構. Tetsu-to-Hagane 108:11, pages 864-876.
Crossref
Renata Latypova, Tun Tun Nyo, Oskari Seppälä, Eric Fangnon, Yuriy Yagodzinskyy, Saara Mehtonen, Hannu Hänninen, Jukka Kömi & Sakari Pallaspuro. (2022) Effect of prior austenite grain morphology on hydrogen embrittlement behaviour under plastic straining in as-quenched 500 HBW steels. Procedia Structural Integrity 42, pages 871-878.
Crossref
Yuji Momotani, Akinobu Shibata & Nobuhiro Tsuji. (2022) Hydrogen embrittlement behaviors at different deformation temperatures in as-quenched low-carbon martensitic steel. International Journal of Hydrogen Energy 47:5, pages 3131-3140.
Crossref
Yuri Sugiyama & Kenichi Takai. (2021) Quantities and distribution of strain-induced vacancies and dislocations enhanced by hydrogen in iron. Acta Materialia 208, pages 116663.
Crossref
L. Cho, P.E. Bradley, D.S. Lauria, M.L. Martin, M.J. Connolly, J.T. Benzing, E.J. Seo, K.O. Findley, J.G. Speer & A.J. Slifka. (2021) Characteristics and mechanisms of hydrogen-induced quasi-cleavage fracture of lath martensitic steel. Acta Materialia 206, pages 116635.
Crossref
Yuji Sakiyama, Tomohiko Omura, Kazuki Sugita, Masataka Mizuno, Hideki Araki & Yasuharu Shirai. (2021) Effect of Strain Rate on Hydrogen Embrittlement Susceptibility of Tempered Martensitic Steel and the Rate-Determining Process焼戻しマルテンサイト鋼の水素脆化特性に及ぼすひずみ速度の影響とその律速過程. Tetsu-to-Hagane 107:11, pages 986-995.
Crossref
JiaoJiao Wang, Weijun Hui, Zhiqi Xie, Zhanhua Wang, Yongjian Zhang & Xiaoli Zhao. (2020) Hydrogen embrittlement of a cold-rolled Al-containing medium-Mn steel: Effect of pre-strain. International Journal of Hydrogen Energy 45:41, pages 22080-22093.
Crossref
Katsutoshi Takashima, Ruoyu Han, Ken’ichi Yokoyama & Yoshimasa Funakawa. (2019) Hydrogen Embrittlement Induced by Hydrogen Charging during Deformation of Ultra-high Strength Steel Sheet Consisting of Ferrite and Nanometer-sized Precipitates. ISIJ International 59:12, pages 2327-2333.
Crossref
G Ranjith Kumar, G Rajyalakshmi & S Swaroop. (2019) A critical appraisal of laser peening and its impact on hydrogen embrittlement of titanium alloys. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 233:13, pages 2371-2398.
Crossref
Akinobu Shibata, Yazid Madi, Kazuho Okada, Nobuhiro Tsuji & Jacques Besson. (2019) Mechanical and microstructural analysis on hydrogen-related fracture in a martensitic steel. International Journal of Hydrogen Energy 44:54, pages 29034-29046.
Crossref
Michihiko Nagumo & Kenichi Takai. (2019) The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview. Acta Materialia 165, pages 722-733.
Crossref
M Ohori, T Chiba, Y Matsumoto, H Suzuki & K Takai. (2018) Changes in the substructure of tempered martensitic steel during the application of cyclic elastic stress in the presence of hydrogen. IOP Conference Series: Materials Science and Engineering 461, pages 012062.
Crossref
Kazuho Okada, Akinobu Shibata, Yasunari Takeda & Nobuhiro Tsuji. (2018) Crystallographic feature of hydrogen-related fracture in 2Mn-0.1C ferritic steel. International Journal of Hydrogen Energy 43:24, pages 11298-11306.
Crossref
Akihide Nagao, Mohsen Dadfarnia, Brian P. Somerday, Petros Sofronis & Robert O. Ritchie. (2018) Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steels. Journal of the Mechanics and Physics of Solids 112, pages 403-430.
Crossref
Yu Matsumoto & Kenichi Takai. (2017) Method of Evaluating Hydrogen Embrittlement Susceptibility of Tempered Martensitic Steel Showing Intergranular Fracture. Metallurgical and Materials Transactions A 49:2, pages 490-497.
Crossref
Yasunari Takeda, Takashi Yonemura, Yuji Momotani, Akinobu Shibata & Nobuhiro Tsuji. 2018. Proceedings of the International Conference on Martensitic Transformations: Chicago. Proceedings of the International Conference on Martensitic Transformations: Chicago 227 231 .
Y.H. Fan, B. Zhang, H.L. Yi, G.S. Hao, Y.Y. Sun, J.Q. Wang, E.-H. Han & W. Ke. (2017) The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel. Acta Materialia 139, pages 188-195.
Crossref
Kota Tomatsu, Hikaru Kawata, Takafumi Amino, Tomohiko Omura, Naoki Maruyama & Yoshitaka Nishiyama. (2017) <i>In-situ</i> Microbending Tests of Ni–Cr Alloy during Cathodic Hydrogen Charging by Electrochemical Nanoindentation. ISIJ International 57:3, pages 564-572.
Crossref
Weijun Hui, Yongjian Zhang, Xiaoli Zhao, Chengwei Shao, Kaizhong Wang, Wei Sun & Tongren Yu. (2016) Influence of cold deformation and annealing on hydrogen embrittlement of cold hardening bainitic steel for high strength bolts. Materials Science and Engineering: A 662, pages 528-536.
Crossref
Akihide Nagao, Mohsen Dadfarnia, Petros Sofronis & Ian Robertson. 2016. Encyclopedia of Iron, Steel, and Their Alloys. Encyclopedia of Iron, Steel, and Their Alloys 1768 1784 .
Michihiko Nagumo. 2016. Encyclopedia of Iron, Steel, and Their Alloys. Encyclopedia of Iron, Steel, and Their Alloys 1785 1800 .
Michihiko NagumoMichihiko Nagumo. 2016. Fundamentals of Hydrogen Embrittlement. Fundamentals of Hydrogen Embrittlement 167 196 .
Michihiko NagumoMichihiko Nagumo. 2016. Fundamentals of Hydrogen Embrittlement. Fundamentals of Hydrogen Embrittlement 137 165 .
Akinobu Shibata, Tamotsu Murata, Hiroshi Takahashi, Takahiro Matsuoka & Nobuhiro Tsuji. (2015) Characterization of Hydrogen-Related Fracture Behavior in As-Quenched Low-Carbon Martensitic Steel and Tempered Medium-Carbon Martensitic Steel. Metallurgical and Materials Transactions A 46:12, pages 5685-5696.
Crossref
Xinfeng Li, Yanfei Wang, Peng Zhang, Bo Li, Xiaolong Song & Jing Chen. (2014) Effect of pre-strain on hydrogen embrittlement of high strength steels. Materials Science and Engineering: A 616, pages 116-122.
Crossref
Tomoki Doshida & Kenichi Takai. (2014) Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content. Acta Materialia 79, pages 93-107.
Crossref
A. Oudriss, A. Fleurentin, G. Courlit, E. Conforto, C. Berziou, C. Rébéré, S. Cohendoz, J.M. Sobrino, J. Creus & X. Feaugas. (2014) Consequence of the diffusive hydrogen contents on tensile properties of martensitic steel during the desorption at room temperature. Materials Science and Engineering: A 598, pages 420-428.
Crossref
T. Doshida, M. Nakamura, H. Saito, T. Sawada & K. Takai. (2013) Hydrogen-enhanced lattice defect formation and hydrogen embrittlement of cyclically prestressed tempered martensitic steel. Acta Materialia 61:20, pages 7755-7766.
Crossref
K.S. Chandravathi, C.S. Sasmal, K. Laha, P. Parameswaran, M. Nandagopal, V.D. Vijayanand, M.D. Mathew, T. Jayakumar & E. Rajendra Kumar. (2013) Effect of isothermal heat treatment on microstructure and mechanical properties of Reduced Activation Ferritic Martensitic steel. Journal of Nuclear Materials 435:1-3, pages 128-136.
Crossref
Koichi Takasawa, Ryo Ikeda, Noboru Ishikawa & Ryoji Ishigaki. (2012) Effects of grain size and dislocation density on the susceptibility to high-pressure hydrogen environment embrittlement of high-strength low-alloy steels. International Journal of Hydrogen Energy 37:3, pages 2669-2675.
Crossref
Michihiko Nagumo. (2012) Conformity between Mechanics and Microscopic Functions of Hydrogen in Failure. ISIJ International 52:2, pages 168-173.
Crossref
Koichi TakasawaYoru WadaRyoji IshigakiRinzo Kayano. (2010) Effects of Grain Size on Hydrogen Environment Embrittlement of High Strength Low Alloy Steel in 45 MPa Gaseous Hydrogen. MATERIALS TRANSACTIONS 51:2, pages 347-353.
Crossref
Ji Soo Kim, You Hwan Lee, Duk Lak Lee, Kyung-Tae Park & Chong Soo Lee. (2009) Microstructural influences on hydrogen delayed fracture of high strength steels. Materials Science and Engineering: A 505:1-2, pages 105-110.
Crossref
Ken’ichi Yokoyama, Miho Tomita & Jun’ichi Sakai. (2009) Hydrogen embrittlement behavior induced by dynamic martensite transformation of Ni–Ti superelastic alloy. Acta Materialia 57:6, pages 1875-1885.
Crossref
K. Takai, H. Shoda, H. Suzuki & M. Nagumo. (2008) Lattice defects dominating hydrogen-related failure of metals. Acta Materialia 56:18, pages 5158-5167.
Crossref
Maoqiu Wang, Eiji Akiyama & Kaneaki Tsuzaki. (2007) Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test. Corrosion Science 49:11, pages 4081-4097.
Crossref
Michihiko Nagumo. (2007) Mechanism of Hydrogen-related Failure II. Zairyo-to-Kankyo 56:9, pages 382-394.
Crossref
Michihiko Nagumo. (2007) Characteristic Features of Hydrogen-related Failure. Zairyo-to-Kankyo 56:4, pages 132-147.
Crossref
Ken’ichi Yokoyama, Tatsuya Eguchi, Kenzo Asaoka & Michihiko Nagumo. (2004) Effect of constituent phase of Ni–Ti shape memory alloy on susceptibility to hydrogen embrittlement. Materials Science and Engineering: A 374:1-2, pages 177-183.
Crossref
Michihiko NAGUMO. (2004) Effects of Hydrogen on Mechanical Behavior of Steels. Tetsu-to-Hagane 90:10, pages 766-775.
Crossref
T. Ohmisawa, S. Uchiyama & M. Nagumo. (2003) Detection of hydrogen trap distribution in steel using a microprint technique. Journal of Alloys and Compounds 356-357, pages 290-294.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.