1,014
Views
82
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data

, , , &
Pages 4801-4808 | Received 14 Feb 2005, Accepted 07 Jun 2005, Published online: 24 Jan 2011

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (13)

Hammadi Achour, Ahmed Toujani, Hichem Trabelsi & Wahbi Jaouadi. (2022) Evaluation and comparison of Sentinel-2 MSI, Landsat 8 OLI, and EFFIS data for forest fires mapping. Illustrations from the summer 2017 fires in Tunisia. Geocarto International 37:24, pages 7021-7040.
Read now
Saeid Gholinejad & Elahe Khesali. (2021) An automatic procedure for generating burn severity maps from the satellite images-derived spectral indices. International Journal of Digital Earth 14:11, pages 1659-1673.
Read now
Andrey Karpachevskiy, Sergey Lednev, Ivan Semenkov, Anna Sharapova, Sultan Nagiyev & Tatiana Koroleva. (2021) Delineation of burned arid landscapes using Landsat 8 OLI data: a case study of Karaganda region in Kazakhstan. Arid Land Research and Management 35:3, pages 292-310.
Read now
Tianchan Shan, Wei Zheng, Jie Chen & Shihao Tang. (2021) A burned area mapping method for the FY-3D MERSI based on the single-temporal L1 data and multi-temporal daily active fire products. International Journal of Remote Sensing 42:4, pages 1292-1310.
Read now
Peng Wang, Hongyu Yao, Gong Zhang, Yingying Kong, Shifang Lu & Xiangyang Peng. (2021) Land cover target mapping at subpixel scale for Landsat 8 OLI image by using multiscale-infrared information. International Journal of Remote Sensing 42:3, pages 1054-1076.
Read now
Emanuel Arnal Storey, Krista R. Lee West & Douglas A. Stow. (2021) Utility and optimization of LANDSAT-derived burned area maps for southern California. International Journal of Remote Sensing 42:2, pages 486-505.
Read now
Dongdong Han, Xueying Di, Guang Yang, Long Sun & Yuetai Weng. (2021) Quantifying fire severity: a brief review and recommendations for improvement. Ecosystem Health and Sustainability 7:1.
Read now
Luís Pádua, Jakub Vanko, Jonáš Hruška, Telmo Adão, Joaquim J. Sousa, Emanuel Peres & Raul Morais. (2017) UAS, sensors, and data processing in agroforestry: a review towards practical applications. International Journal of Remote Sensing 38:8-10, pages 2349-2391.
Read now
Anne Jacquin, Véronique Cheret, David Sheeren & Gérard Balent. (2011) Détermination du régime des feux en milieu de savane à Madagascar à partir de séries temporelles d'images MODIS. International Journal of Remote Sensing 32:24, pages 9219-9242.
Read now
. (2011) Full issue in PDF / Numéro complet en form PDF. Canadian Journal of Remote Sensing 37:3, pages 253-320.
Read now
Byungdoo Lee, Seon Young Kim, Joosang Chung & Pil Sun Park. (2008) Estimation of fire severity by use of Landsat TM images and its relevance to vegetation and topography in the 2000 Samcheok forest fire. Journal of Forest Research 13:4, pages 197-204.
Read now
A. M. S. Smith, N. A. Drake, M. J. Wooster, A. T. Hudak, Z. A. Holden & C. J. Gibbons. (2007) Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs: comparison of methods and application to MODIS. International Journal of Remote Sensing 28:12, pages 2753-2775.
Read now

Articles from other publishers (69)

Elena Argiriadis, Rhawn F. Denniston, Stefania Ondei, David M.J.S. Bowman, Giulia Genuzio, Huong Quynh Anh Nguyen, Jamie Thompson, Mattia Baltieri, Jonathan Azenon, John Cugley, David Woods, William F. Humphreys & Carlo Barbante. (2024) Polycyclic aromatic hydrocarbons in tropical Australian stalagmites: a framework for reconstructing paleofire activity. Geochimica et Cosmochimica Acta 366, pages 250-266.
Crossref
Kendra Walker. (2024) Overcoming Common Pitfalls to Improve the Accuracy of Crop Residue Burning Measurement Based on Remote Sensing Data. Remote Sensing 16:2, pages 342.
Crossref
Karen Dyson, Andréa Puzzi Nicolau, Nicholas Clinton & David Saah. 2024. Cloud-Based Remote Sensing with Google Earth Engine. Cloud-Based Remote Sensing with Google Earth Engine 169 194 .
Giovanni Laneve, Marco Di Fonzo, Valerio Pampanoni & Ramon Bueno Morles. (2023) Progress and Limitations in the Satellite-Based Estimate of Burnt Areas. Remote Sensing 16:1, pages 42.
Crossref
Yixin Zhao, Yajun Huang, Xupeng Sun, Guanyu Dong, Yuanqing Li & Mingguo Ma. (2023) Forest Fire Mapping Using Multi-Source Remote Sensing Data: A Case Study in Chongqing. Remote Sensing 15:9, pages 2323.
Crossref
David Montero, César Aybar, Miguel D. Mahecha, Francesco Martinuzzi, Maximilian Söchting & Sebastian Wieneke. (2023) A standardized catalogue of spectral indices to advance the use of remote sensing in Earth system research. Scientific Data 10:1.
Crossref
Admilson da Penha Pacheco, Juarez Antonio da Silva Junior, Antonio Miguel Ruiz-Armenteros, Renato Filipe Faria Henriques & Ivaneide de Oliveira Santos. (2023) Analysis of Spectral Separability for Detecting Burned Areas Using Landsat-8 OLI/TIRS Images under Different Biomes in Brazil and Portugal. Forests 14:4, pages 663.
Crossref
Emre Çolak & Filiz Sunar. (2022) Investigating the usefulness of satellite-retrieved land surface temperature (LST) in pre- and post-fire spatial analysis. Earth Science Informatics 16:1, pages 945-963.
Crossref
Mallikarjun Mishra, Kiran Kumari Singh, Prem C. Pandey, Rahul Devrani, Avinash Kumar Pandey, KN Prudhvi Raju, Prabhat Ranjan, Aman Arora, Romulus Costache, Saeid Janizadeh, Nguyen Thuy Linh & Manish Pandey. 2022. Advances in Remote Sensing Technology and the Three Poles. Advances in Remote Sensing Technology and the Three Poles 83 116 .
Eldar Kurbanov, Oleg Vorobev, Sergey Lezhnin, Jinming Sha, Jinliang Wang, Xiaomei Li, Janine Cole, Denis Dergunov & Yibo Wang. (2022) Remote Sensing of Forest Burnt Area, Burn Severity, and Post-Fire Recovery: A Review. Remote Sensing 14:19, pages 4714.
Crossref
Rylan Boothman & Jeffrey A. Cardille. (2022) New techniques for old fires: Using deep learning to augment fire maps from the early satellite era. Frontiers in Environmental Science 10.
Crossref
Sunita Verma, Manish Soni, Harshbardhan Kumar, Swagata Payra, Manoj K Mishra & Rohini Bhawar. (2022) Characterizing aerosols during forest fires over Uttarakhand region in India using multi-satellite remote sensing data. Advances in Space Research 70:4, pages 947-960.
Crossref
Nikhil Behari, Henry T. Holbrook, Paris Garrett, Corey A. Ippolito & Chester Dolph. (2022) Contextual Segmentation of Fire Spotting Regions Through Satellite-Augmented Autonomous Modular Sensor Imagery. Contextual Segmentation of Fire Spotting Regions Through Satellite-Augmented Autonomous Modular Sensor Imagery.
Casandra C. Pérez, Adriana Ema Olthoff, Humberto Hernández-Trejo & Cristóbal Daniel Rullán-Silva. (2022) Evaluating the best spectral indices for burned areas in the tropical Pantanos de Centla Biosphere Reserve, Southeastern Mexico. Remote Sensing Applications: Society and Environment 25, pages 100664.
Crossref
Jae Hyun Kim, Shinyeong Park, Seung Ho Kim & Eun Ju Lee. (2021) Long-Term Land Cover Changes in the Western Part of the Korean Demilitarized Zone. Land 10:7, pages 708.
Crossref
Natalia Indira Vargas-Cuentas & Avid Roman-Gonzalez. (2021) Satellite-Based Analysis of Forest Fires in the Bolivian Chiquitania and Amazon Region: Case 2019. IEEE Aerospace and Electronic Systems Magazine 36:2, pages 38-54.
Crossref
Kirana Widyastuti, Muhammad Ali Imron, Subyantoro Tri Pradopo, Hatma Suryatmojo, Bertha Maya Sopha, Allan Spessa & Uta Berger. (2021) PeatFire: an agent-based model to simulate fire ignition and spreading in a tropical peatland ecosystem. International Journal of Wildland Fire 30:2, pages 71.
Crossref
Emmanuel SkoufiasEric StroblThomas Breivik Tveit. (2020) Flood and Tsunami Damage Indices Based on Remotely Sensed Data: An Application to Indonesia. Natural Hazards Review 21:4.
Crossref
Kudzai Shaun Mpakairi, Shamiso Lynnet Kadzunge & Henry Ndaimani. (2020) Testing the utility of the blue spectral region in burned area mapping: Insights from savanna wildfires. Remote Sensing Applications: Society and Environment 20, pages 100365.
Crossref
Florent Rumiano, Elodie Wielgus, Eve Miguel, Simon Chamaillé-Jammes, Hugo Valls-Fox, Daniel Cornélis, Michel De Garine-Wichatitsky, Hervé Fritz, Alexandre Caron & Annelise Tran. (2020) Remote Sensing of Environmental Drivers Influencing the Movement Ecology of Sympatric Wild and Domestic Ungulates in Semi-Arid Savannas, a Review. Remote Sensing 12:19, pages 3218.
Crossref
Andrey Dara, Matthias Baumann, Norbert Hölzel, Patrick Hostert, Johannes Kamp, Daniel Müller, Benjamin Ullrich & Tobias Kuemmerle. (2019) Post-Soviet Land-Use Change Affected Fire Regimes on the Eurasian Steppes. Ecosystems 23:5, pages 943-956.
Crossref
Todd J. Hawbaker, Melanie K. Vanderhoof, Gail L. Schmidt, Yen-Ju Beal, Joshua J. Picotte, Joshua D. Takacs, Jeff T. Falgout & John L. Dwyer. (2020) The Landsat Burned Area algorithm and products for the conterminous United States. Remote Sensing of Environment 244, pages 111801.
Crossref
Syam’ani. (2020) Capability of Sentinel-1 Synthetic Aperture Radar polarimetric change detection for burned area extraction in South Kalimantan, Indonesia. IOP Conference Series: Earth and Environmental Science 500:1, pages 012004.
Crossref
Emre Çolak & Filiz Sunar. (2019) Spatial pattern analysis of post-fire damages in the Menderes District of Turkey. Frontiers of Earth Science 14:2, pages 446-461.
Crossref
Jean L. Steiner, Jeffrey Wetter, Shelby Robertson, Stephen Teet, Jie Wang, Xiaocui Wu, Yuting Zhou, David Brown & Xiangming Xiao. (2020) Grassland Wildfires in the Southern Great Plains: Monitoring Ecological Impacts and Recovery. Remote Sensing 12:4, pages 619.
Crossref
Mario M. Valero, Steven Verstockt, Christian Mata, Dan Jimenez, Lloyd Queen, Oriol Rios, Elsa Pastor & Eulàlia Planas. (2020) Image Similarity Metrics Suitable for Infrared Video Stabilization during Active Wildfire Monitoring: A Comparative Analysis. Remote Sensing 12:3, pages 540.
Crossref
Peng Wang, Lei Zhang, Gong Zhang, Benzhou Jin & Henry Leung. (2019) Multispectral Image Super-Resolution Burned-Area Mapping Based on Space-Temperature Information. Remote Sensing 11:22, pages 2695.
Crossref
Paula García-Llamas, Susana Suárez-Seoane, José Manuel Fernández-Guisuraga, Víctor Fernández-García, Alfonso Fernández-Manso, Carmen Quintano, Angela Taboada, Elena Marcos & Leonor Calvo. (2019) Evaluation and comparison of Landsat 8, Sentinel-2 and Deimos-1 remote sensing indices for assessing burn severity in Mediterranean fire-prone ecosystems. International Journal of Applied Earth Observation and Geoinformation 80, pages 137-144.
Crossref
Bang Tran, Mihai Tanase, Lauren Bennett & Cristina Aponte. (2018) Evaluation of Spectral Indices for Assessing Fire Severity in Australian Temperate Forests. Remote Sensing 10:11, pages 1680.
Crossref
L. Collins, P. Griffioen, G. Newell & A. Mellor. (2018) The utility of Random Forests for wildfire severity mapping. Remote Sensing of Environment 216, pages 374-384.
Crossref
Maria del Carmen Quintano, Alfonso Fernández-Manso, Elena Marcos, Susana Suarez-Seoane, Leonor Calvo, Paula García-Llamas, Victor Fernández-García & Jose M. Fernandez-Guisuraga. (2018) Thermally enhanced spectral indices to discriminate burn severity in Mediterranean forest ecosystems. Thermally enhanced spectral indices to discriminate burn severity in Mediterranean forest ecosystems.
Aaron M. Sparks, Crystal A. Kolden, Alistair M. S. Smith, Luigi Boschetti, Daniel M. Johnson & Mark A. Cochrane. (2018) Fire intensity impacts on post-fire temperate coniferous forest net primary productivity. Biogeosciences 15:4, pages 1173-1183.
Crossref
Alexander Filkov, Thomas Duff & Trent Penman. (2018) Improving Fire Behaviour Data Obtained from Wildfires. Forests 9:2, pages 81.
Crossref
Emmanouil Psomiadis, George Athanasakis & Andromachi Chatziantoniou. (2017) High-resolution Earth observation data and spatial analysis for burn severity evaluation and post-fire effects assessment in the Island of Chios, Greece. High-resolution Earth observation data and spatial analysis for burn severity evaluation and post-fire effects assessment in the Island of Chios, Greece.
Tianchan Shan, Changlin Wang, Fang Chen, Qinchun Wu, Bin Li, Bo Yu, Zeeshan Shirazi, Zhengyang Lin & Wei Wu. (2017) A Burned Area Mapping Algorithm for Chinese FengYun-3 MERSI Satellite Data. Remote Sensing 9:7, pages 736.
Crossref
Xiucheng Yang, Shanshan Zhao, Xuebin Qin, Na Zhao & Ligang Liang. (2017) Mapping of Urban Surface Water Bodies from Sentinel-2 MSI Imagery at 10 m Resolution via NDWI-Based Image Sharpening. Remote Sensing 9:6, pages 596.
Crossref
Gabriel Navarro, Isabel Caballero, Gustavo Silva, Pedro-Cecilio Parra, Águeda Vázquez & Rui Caldeira. (2017) Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery. International Journal of Applied Earth Observation and Geoinformation 58, pages 97-106.
Crossref
Tarmo K. Remmel & Ajith H. Perera. 2017. Mapping Forest Landscape Patterns. Mapping Forest Landscape Patterns 105 145 .
Lisa Holsinger, Sean A. Parks & Carol Miller. (2016) Weather, fuels, and topography impede wildland fire spread in western US landscapes. Forest Ecology and Management 380, pages 59-69.
Crossref
Akli Benali, Ana Russo, Ana Sá, Renata Pinto, Owen Price, Nikos Koutsias & José Pereira. (2016) Determining Fire Dates and Locating Ignition Points With Satellite Data. Remote Sensing 8:4, pages 326.
Crossref
Bing Lu, Yuhong He & Alexander Tong. (2016) Evaluation of spectral indices for estimating burn severity in semiarid grasslands. International Journal of Wildland Fire 25:2, pages 147.
Crossref
G. Paez, M. Strojnik & M. K. Scholl. Analysis of propagation of complex fire: case of the Yarnell Hill Fire 1. Analysis of propagation of complex fire: case of the Yarnell Hill Fire 1.
Carmen Quintano, Alfonso Fernández-Manso, Victor Fernández-García, Elena Marcos & Leonor Calvo. Changes on albedo after a large forest fire in Mediterranean ecosystems. Changes on albedo after a large forest fire in Mediterranean ecosystems.
Sean A. Parks, Lisa M. Holsinger, Carol Miller & Cara R. Nelson. (2015) Wildland fire as a self‐regulating mechanism: the role of previous burns and weather in limiting fire progression. Ecological Applications 25:6, pages 1478-1492.
Crossref
Khelifa Djerriri & Malki Mimoun. (2015) Genetic programming and one-class classification for discovering useful spectral transformations. Genetic programming and one-class classification for discovering useful spectral transformations.
J. Lazzari, H. J. Yoon, D. A. Keith & D. A. Driscoll. (2015) Local environmental covariates are important for predicting fire history from tree stem diameters. International Journal of Wildland Fire 24:6, pages 871.
Crossref
Aaron M. Sparks, Luigi Boschetti, Alistair M. S. Smith, Wade T. Tinkham, Karen O. Lannom & Beth A. Newingham. (2015) An accuracy assessment of the MTBS burned area product for shrub–steppe fires in the northern Great Basin, United States. International Journal of Wildland Fire 24:1, pages 70.
Crossref
Nicholas R. Goodwin & Lisa J. Collett. (2014) Development of an automated method for mapping fire history captured in Landsat TM and ETM + time series across Queensland, Australia. Remote Sensing of Environment 148, pages 206-221.
Crossref
Lennert Schepers, Birgen Haest, Sander Veraverbeke, Toon Spanhove, Jeroen Vanden Borre & Rudi Goossens. (2014) Burned Area Detection and Burn Severity Assessment of a Heathland Fire in Belgium Using Airborne Imaging Spectroscopy (APEX). Remote Sensing 6:3, pages 1803-1826.
Crossref
Martin J. Wooster, Gareth Roberts, Alistair M. S. Smith, Joshua Johnston, Patrick Freeborn, Stefania Amici & Andrew T. Hudak. 2013. Thermal Infrared Remote Sensing. Thermal Infrared Remote Sensing 347 390 .
S. Veraverbeke, S.J. Hook & S. Harris. (2012) Synergy of VSWIR (0.4–2.5μm) and MTIR (3.5–12.5μm) data for post-fire assessments. Remote Sensing of Environment 124, pages 771-779.
Crossref
Sarah Harris, Sander Veraverbeke & Simon Hook. (2011) Evaluating Spectral Indices for Assessing Fire Severity in Chaparral Ecosystems (Southern California) Using MODIS/ASTER (MASTER) Airborne Simulator Data. Remote Sensing 3:11, pages 2403-2419.
Crossref
S. Veraverbeke, S. Harris & S. Hook. (2011) Evaluating spectral indices for burned area discrimination using MODIS/ASTER (MASTER) airborne simulator data. Remote Sensing of Environment 115:10, pages 2702-2709.
Crossref
Fang Chen, Keith T. Weber, Jamey Anderson & Bhushan Gokhal. (2011) Assessing the susceptibility of semiarid rangelands to wildfires using Terra MODIS and Landsat Thematic Mapper data. International Journal of Wildland Fire 20:5, pages 690.
Crossref
Donald McKenzie, Carol Miller & Donald A. Falk. 2011. The Landscape Ecology of Fire. The Landscape Ecology of Fire 3 25 .
George P. Petropoulos, Krishna Prasad Vadrevu, Gavriil Xanthopoulos, George Karantounias & Marko Scholze. (2010) A Comparison of Spectral Angle Mapper and Artificial Neural Network Classifiers Combined with Landsat TM Imagery Analysis for Obtaining Burnt Area Mapping. Sensors 10:3, pages 1967-1985.
Crossref
Zachary A. Holden, Penelope Morgan, Alistair M. S. Smith & Lee Vierling. (2010) Beyond Landsat: a comparison of four satellite sensors for detecting burn severity in ponderosa pine forests of the Gila Wilderness, NM, USA. International Journal of Wildland Fire 19:4, pages 449.
Crossref
Tarmo K. Remmel & Ajith H. Perera. (2009) Mapping Natural Phenomena: Boreal Forest Fires with Non-discrete Boundaries. Cartographica: The International Journal for Geographic Information and Geovisualization 44:4, pages 274-288.
Crossref
J. Norton, N. Glenn, M. Germino, K. Weber & S. Seefeldt. (2009) Relative suitability of indices derived from Landsat ETM+ and SPOT 5 for detecting fire severity in sagebrush steppe. International Journal of Applied Earth Observation and Geoinformation 11:5, pages 360-367.
Crossref
Leigh B. Lentile, Alistair M. S. Smith, Andrew T. Hudak, Penelope Morgan, Michael J. Bobbitt, Sarah A. Lewis & Peter R. Robichaud. (2009) Remote sensing for prediction of 1-year post-fire ecosystem condition. International Journal of Wildland Fire 18:5, pages 594.
Crossref
Mary C. Henry. (2008) Comparison of Single- and Multi-date Landsat Data for Mapping Wildfire Scars in Ocala National Forest, Florida. Photogrammetric Engineering & Remote Sensing 74:7, pages 881-891.
Crossref
P Corona, A Lamonaca & G Chirici. (2008) Remote sensing support for post fire forest management. iForest - Biogeosciences and Forestry 1:1, pages 6-12.
Crossref
Zachary A. Holden, Penelope Morgan, Matthew G. Rollins & Kathleen Kavanagh. (2007) Effects of Multiple Wildland Fires on Ponderosa Pine Stand Structure in Two Southwestern Wilderness Areas, USA. Fire Ecology 3:2, pages 18-33.
Crossref
Cho-ying Huang, Stuart E. Marsh, Mitchel P. McClaran & Steven R. Archer. (2007) POSTFIRE STAND STRUCTURE IN A SEMIARID SAVANNA: CROSS‐SCALE CHALLENGES ESTIMATING BIOMASS. Ecological Applications 17:7, pages 1899-1910.
Crossref
Lauren B. Shapiro-MillerEmily K. HeyerdahlPenelope Morgan. (2007) Comparison of fire scars, fire atlases, and satellite data in the northwestern United States. Canadian Journal of Forest Research 37:10, pages 1933-1943.
Crossref
Andrew T. Hudak, Penelope Morgan, Michael J. Bobbitt, Alistair M. S. Smith, Sarah A. Lewis, Leigh B. Lentile, Peter R. Robichaud, Jess T. Clark & Randy A. McKinley. (2007) The Relationship of Multispectral Satellite Imagery to Immediate Fire Effects. Fire Ecology 3:1, pages 64-90.
Crossref
Crystal A. Kolden & Peter J. Weisberg. (2007) Assessing Accuracy of Manually-mapped Wildfire Perimeters in Topographically Dissected Areas. Fire Ecology 3:1, pages 22-31.
Crossref
Leigh B. Lentile, Zachary A. Holden, Alistair M. S. Smith, Michael J. Falkowski, Andrew T. Hudak, Penelope Morgan, Sarah A. Lewis, Paul E. Gessler & Nate C. Benson. (2006) Remote sensing techniques to assess active fire characteristics and post-fire effects. International Journal of Wildland Fire 15:3, pages 319.
Crossref
Zachary Alan Holden, Penelope Morgan, Matthew G. Rollins & R. Gerald Wright. (2006) Ponderosa pine snag densities following multiple fires in the Gila Wilderness, New Mexico. Forest Ecology and Management 221:1-3, pages 140-146.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.