2,947
Views
31
CrossRef citations to date
0
Altmetric
Article

Exploring the potential of the dynamic hysteresis loops via high field, high frequency and temperature adjustable AC magnetometer for magnetic hyperthermia characterization

ORCID Icon, ORCID Icon, , , , , & show all
Pages 976-991 | Received 12 Apr 2020, Accepted 17 Jul 2020, Published online: 12 Aug 2020

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

Yicong Chen & Bethanie J.H. Stadler. (2023) Predictions of optimal heating by magnetic reversal behavior of magnetic nanowires (MNWs) with different materials. International Journal of Hyperthermia 40:1.
Read now

Articles from other publishers (30)

Carlos Caro, Cinzia Guzzi, Irene Moral‐Sánchez, Jesús David Urbano‐Gámez, Ana M. Beltrán & Maria Luisa García‐Martín. (2024) Smart Design of ZnFe and ZnFe@Fe Nanoparticles for MRI‐Tracked Magnetic Hyperthermia Therapy: Challenging Classical Theories of Nanoparticles Growth and Nanomagnetism. Advanced Healthcare Materials 13:12.
Crossref
Yuui Adachi, Akihiro Kuwahata, Eiji Nakamura & Shin Yabukami. (2024) Enhancing heating efficiency of magnetic hyperthermia using pulsed magnetic fields. AIP Advances 14:1.
Crossref
Roghayeh Sheervalilou, Samideh Khoei, Sepideh Khoee, Milad Shirvaliloo, Elaheh Sadri, Sakine Shirvalilou & Mina Goudarzi. (2023) Magnetohyperthermia-synergistic glioma cancer therapy enabled by magnetic graphene oxide nanoheaters: promising nanostructure for in vitro and in vivo applications. Cancer Nanotechnology 14:1.
Crossref
O.M. Lemine, Kheireddine El-Boubbou, Inaki Orue, José Ángel García, M. Elansary, Rizwan Ali, L. El Mir & M. Henini. (2023) Heating efficiency of Gd- and Co-doped γ-Fe2O3 nanoparticles measured by AC magnetometer for magnetic-mediated hyperthermia. Journal of Magnetism and Magnetic Materials 587, pages 171279.
Crossref
Esraa Samy Abu Serea, Iñaki Orue, José Ángel García, Senentxu Lanceros-Méndez & Javier Reguera. (2023) Enhancement and Tunability of Plasmonic-Magnetic Hyperthermia through Shape and Size Control of Au:Fe 3 O 4 Janus Nanoparticles . ACS Applied Nano Materials 6:19, pages 18466-18479.
Crossref
Gabriele Barrera, Paolo Allia & Paola Tiberto. (2023) Multifunctional effects in magnetic nanoparticles for precision medicine: combining magnetic particle thermometry and hyperthermia. Nanoscale Advances 5:16, pages 4080-4094.
Crossref
Javier Ortega-Julia, Daniel Ortega & Jonathan Leliaert. (2023) Estimating the heating of complex nanoparticle aggregates for magnetic hyperthermia. Nanoscale 15:24, pages 10342-10350.
Crossref
Lucía Gandarias, Elizabeth M. Jefremovas, David Gandia, Lourdes Marcano, Virginia Martínez-Martínez, Pedro Ramos-Cabrer, Daniel M. Chevrier, Sergio Valencia, Luis Fernández Barquín, M. Luisa Fdez-Gubieda, Javier Alonso, Ana García-Prieto & Alicia Muela. (2023) Incorporation of Tb and Gd improves the diagnostic functionality of magnetotactic bacteria. Materials Today Bio 20, pages 100680.
Crossref
Esther Rani Aluri, Sameer D. Shingte, Eoin P. McKiernan, Steven Ferguson & Dermot F. Brougham. (2023) Modulation of hyperthermic and relaxometric responses of magnetic iron oxide nanoparticles through ligand exchange provides design criteria for dual-functionality. Journal of Materials Chemistry C 11:19, pages 6417-6428.
Crossref
Gabriele Barrera, Paolo Allia & Paola Tiberto. (2023) Magnetic Tracers for Magnetic Particle Imaging: Insight on the Roles of Frequency-Sustained Hysteresis and Interactions in Quantitative Imaging. Physical Review Applied 19:3.
Crossref
David Gandia, Lourdes Marcano, Lucía Gandarias, Danny Villanueva, Iñaki Orue, Radu Marius Abrudan, Sergio Valencia, Irati Rodrigo, José Ángel García, Alicia Muela, Ma Luisa Fdez-Gubieda & Javier Alonso. (2022) Tuning the Magnetic Response of Magnetospirillum magneticum by Changing the Culture Medium: A Straightforward Approach to Improve Their Hyperthermia Efficiency. ACS Applied Materials & Interfaces 15:1, pages 566-577.
Crossref
D.P. Valdés, T.E. Torres, A.C. Moreno Maldonado, G. Urretavizcaya, M.S. Nadal, M. Vasquez Mansilla, R.D. Zysler, G.F. Goya, E. De Biasi & E. Lima. (2023) Thermographical Method to Assess the Performance of Magnetic Nanoparticles in Hyperthermia Experiments through Spatiotemporal Temperature Profiles. Physical Review Applied 19:1.
Crossref
V. Vinodhini & Krishnamoorthi Chintagumpala. (2023) Superparamagnetic hyperthermia and cytotoxicity properties of bimagnetic core–shell nanoparticles synthesized by solvothermal reflux method. Journal of Magnetism and Magnetic Materials 565, pages 170290.
Crossref
R.G. Gontijo & A.B. Guimarães. (2023) Langevin dynamic simulations of magnetic hyperthermia in rotating fields. Journal of Magnetism and Magnetic Materials 565, pages 170171.
Crossref
Antonio Santana-Otero, D. Gómez-Cerezo, C. Lozano-Pedraza, R. López-Méndez, E. Sanz-de Diego, J. Ortega-Juliá, A. Espinosa, F.J. Teran & Daniel Ortega. 2023. Ferrite Nanostructured Magnetic Materials. Ferrite Nanostructured Magnetic Materials 775 803 .
James Wells, Olaf Kosch & Frank Wiekhorst. (2022) Multi-frequency hyperthermia characterisation via calorimetry and AC magnetometry measurements. Journal of Magnetism and Magnetic Materials 563, pages 169992.
Crossref
Lucía Vizcaíno‐Anaya, Carlos Herreros‐Lucas, José M. Vila‐Fungueiriño & María del Carmen Giménez‐López. (2022) Magnetic Hyperthermia Enhancement in Iron‐based Materials Driven by Carbon Support Interactions. Chemistry – A European Journal 28:67.
Crossref
Mateusz Midura, Przemysław Wróblewski, Damian Wanta, Jacek Kryszyn, Waldemar T. Smolik, Grzegorz Domański, Michał Wieteska, Wojciech Obrębski, Ewa Piątkowska-Janko & Piotr Bogorodzki. (2022) The Hybrid System for the Magnetic Characterization of Superparamagnetic Nanoparticles. Sensors 22:22, pages 8879.
Crossref
Idoia Castellanos-Rubio, Ander Barón, Oier Luis-Lizarraga, Irati Rodrigo, Izaskun Gil de Muro, Iñaki Orue, Virginia Martínez-Martínez, Ainara Castellanos-Rubio, Fernando López-Arbeloa & Maite Insausti. (2022) Efficient Magneto-Luminescent Nanosystems based on Rhodamine-Loaded Magnetite Nanoparticles with Optimized Heating Power and Ideal Thermosensitive Fluorescence. ACS Applied Materials & Interfaces.
Crossref
David Cabrera, Takashi Yoshida, Teresa Rincón-Domínguez, J. L. F. Cuñado, Gorka Salas, Alberto Bollero, María del Puerto Morales, Julio Camarero & Francisco J. Teran. (2022) Superparamagnetic-blocked state transition under alternating magnetic fields: towards determining the magnetic anisotropy in magnetic suspensions. Nanoscale 14:24, pages 8789-8796.
Crossref
Mikel Rincón-Iglesias, Irati Rodrigo, Leixuri B. Berganza, Esraa Samy Abu Serea, Fernando Plazaola, Senentxu Lanceros-Méndez, Erlantz Lizundia & Javier Reguera. (2022) Core–Shell Fe 3 O 4 @Au Nanorod-Loaded Gels for Tunable and Anisotropic Magneto- and Photothermia . ACS Applied Materials & Interfaces 14:5, pages 7130-7140.
Crossref
Costas Papadopoulos, Argiris Kolokithas‐Ntoukas, Roberto Moreno, David Fuentes, George Loudos, Vassilios C. Loukopoulos & George C. Kagadis. (2021) Using kinetic Monte Carlo simulations to design efficient magnetic nanoparticles for clinical hyperthermia. Medical Physics 49:1, pages 547-567.
Crossref
Idoia Castellanos-Rubio, Oihane Arriortua, Daniela Iglesias-Rojas, Ander Barón, Irati Rodrigo, Lourdes Marcano, José S. Garitaonandia, Iñaki Orue, M. Luisa Fdez-Gubieda & Maite Insausti. (2021) A Milestone in the Chemical Synthesis of Fe 3 O 4 Nanoparticles: Unreported Bulklike Properties Lead to a Remarkable Magnetic Hyperthermia . Chemistry of Materials 33:22, pages 8693-8704.
Crossref
Irene Morales, Rocio Costo, Nicolas Mille, Julian Carrey, Antonio Hernando & Patricia de la Presa. (2021) Time-dependent AC magnetometry and chain formation in magnetite: the influence of particle size, initial temperature and the shortening of the relaxation time by the applied field. Nanoscale Advances 3:20, pages 5801-5812.
Crossref
Riccardo Ferrero, Gabriele Barrera, Federica Celegato, Marta Vicentini, Hüseyin Sözeri, Nuray Yıldız, Ceren Atila Dinçer, Marco Coïsson, Alessandra Manzin & Paola Tiberto. (2021) Experimental and Modelling Analysis of the Hyperthermia Properties of Iron Oxide Nanocubes. Nanomaterials 11:9, pages 2179.
Crossref
Idoia Castellanos-Rubio, Oihane Arriortua, Lourdes Marcano, Irati Rodrigo, Daniela Iglesias-Rojas, Ander Barón, Ane Olazagoitia-Garmendia, Luca Olivi, Fernando Plazaola, M. Luisa Fdez-Gubieda, Ainara Castellanos-Rubio, José S. Garitaonandia, Iñaki Orue & Maite Insausti. (2021) Shaping Up Zn-Doped Magnetite Nanoparticles from Mono- and Bimetallic Oleates: The Impact of Zn Content, Fe Vacancies, and Morphology on Magnetic Hyperthermia Performance. Chemistry of Materials 33:9, pages 3139-3154.
Crossref
Daniela Paola Valdés, Enio Lima,Roberto Daniel Zysler, Gerardo Fabián Goya & Emilio De Biasi. (2021) Role of Anisotropy, Frequency, and Interactions in Magnetic Hyperthermia Applications: Noninteracting Nanoparticles and Linear Chain Arrangements. Physical Review Applied 15:4.
Crossref
Elizabeth M. Jefremovas, Lucia Gandarias, Irati Rodrigo, Lourdes Marcano, Cordula Gruttner, Jose Angel Garcia, Eneko Garayo, Inaki Orue, Ana Garcia-Prieto, Alicia Muela, Maria Luisa Fernandez-Gubieda, Javier Alonso & Luis Fernandez Barquin. (2021) Nanoflowers Versus Magnetosomes: Comparison Between Two Promising Candidates for Magnetic Hyperthermia Therapy. IEEE Access 9, pages 99552-99561.
Crossref
V Vinodhini & Krishnamoorthi Chintagumpala. (2022) Superparamagnetic Hyperthermia and Cytotoxicity Properties of Bimagnetic Core-Shell Nanoparticlessynthesized by Solvothermal Reflux Method. SSRN Electronic Journal.
Crossref
Rafael Gabler Gontijo & Andrey Barbosa Guimarães. (2022) Langevin Dynamic Simulations of Magnetic Hyperthermia in Rotating Fields. SSRN Electronic Journal.
Crossref