2,947
Views
31
CrossRef citations to date
0
Altmetric
Article

Exploring the potential of the dynamic hysteresis loops via high field, high frequency and temperature adjustable AC magnetometer for magnetic hyperthermia characterization

ORCID Icon, ORCID Icon, , , , , & show all
Pages 976-991 | Received 12 Apr 2020, Accepted 17 Jul 2020, Published online: 12 Aug 2020

References

  • Jordan A, Wust P, Scholz R, et al. Magnetic Fluid Hyperthermia (MFH). In: U. Häfeli, W. Schütt, J. Teller, and M. Zborowski, editors, Scientific and clinical applications of magnetic carriers. Boston, MA: Springer US; 1997. pp. 569–595.
  • Pankhurst QA, Connolly J, Jones SK, et al. Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys. 2003;36(13):R167–R181.
  • Jordan A, Scholz R, Wust P, et al. Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater. 1999;201:413–419.
  • Mornet S, Vasseur S, Grasset F, et al. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem. 2004;14(14):2161–2175.
  • Perigo EA, Hemery G, Sandre O, et al. Fundamentals and advances in magnetic hyperthermia. Appl Phys Rev. 2015;2(4):041302.
  • Jordan A, Wust P, Fahling H, et al. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. 1993. Int J Hyperthermia. 2009;25(7):499–511.
  • Ma M, Wu Y, Zhou J, et al. Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. J Magn Magn Mater. 2004;268(1–2):33–39.
  • Lima E, Torres TE, Rossi LM, Rechenberg HR, et al. Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles. J Nanopart Res. 2013;15(5):1654.
  • Barrera G, Coisson M, Celegato F, et al. Cation distribution effect on static and dynamic magnetic properties of Co1-xZnxFe2O4 ferrite powders. J Magn Magn Mater. 2018;456:372–380.
  • Hergt R, Dutz S, Muller R, et al. Magnetic particle hyperthermia:¨ nanoparticle magnetism and materials development for cancer therapy. J Phys: Condens Matter. 2006;18(38):S2919–S2934.
  • Branquinho LC, Carrião MS, Costa AS, et al. Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia. Sci Rep. 2013;3:2887.
  • Lee J-H, Jang J-t, Choi J-s, et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol. 2011;6(7):418–422.
  • Fortin J-P, Wilhelm C, Servais J, et al. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc. 2007;129(9):2628–2635.
  • Soetaert F, Kandala SK, Bakuzis A, et al. Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles. Sci Rep. 2017;7(1):6661.
  • Wildeboer RR, Southern P, Pankhurst QA. On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. J Phys D: Appl Phys. 2014;47(49):495003.
  • Bordelon DE, Cornejo C, Gruttner C, et al. Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields. J Appl Phys. 2011;109(12):124904.
  • Bekovic M, Hamler A. Determination of the heating effect of magnetic fluid in alternating magnetic field. IEEE Trans Magn. 2010;46(2):552–555.
  • Natividad E, Castro M, Mediano A. Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids. J Magn Magn Mater. 2009;321(10):1497–1500.
  • Dennis CL, Krycka KL, Borchers JA, et al. Internal magnetic structure of nanoparticles dominates time-dependent relaxation processes in a magnetic field. Adv Funct Mater. 2015;25(27):4300–4311.
  • Connord V, Mehdaoui B, Tan RP, et al. An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples—a useful setup for magnetic hyperthermia applications. Rev Sci Instrum. 2014;85(9):093904.
  • Garaio E, Collantes JM, Plazaola F, et al. A multifrequency eletromagnetic applicator with an integrated AC magnetometer for magnetic hyperthermia experiments. Meas Sci Technol. 2014;25(11):115702.
  • Coısson M, Barrera G, Celegato F, et al. Hysteresis losses and specific absorption rate measurements in magnetic nanoparticles for hyperthermia applications. Biochimica et Biophysica Acta (BBA) – General Subjects. 2017;1861(6):1545–1558.
  • Andreu I, Natividad E. Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. Int J Hyperthermia. 2013;29(8):739–751.
  • Wang S-Y, Huang S, Borca-Tasciuc D-A. Potential sources of errors in measuring and evaluating the specific loss power of magnetic nanoparticles in an alternating magnetic field. IEEE Trans Magn. 2013;49(1):255–262.
  • Nemati Z, Alonso J, Rodrigo I, et al. Improving the heating efficiency of iron oxide nanoparticles by tuning their shape and size. J Phys Chem C. 2018;122(4):2367–2381.
  • Morales I, Costo R, Mille N, et al. High frequency hysteresis losses on -Fe2O3 and Fe3O4: susceptibility as a magnetic stamp for chain formation. Nanomaterials. 2018;8(12):970.
  • Gandia D, Gandarias L, Rodrigo I, et al. Unlocking the potential of magnetotactic bacteria as magnetic hyperthermia agents. Small. 2019;15(41):1902626.
  • Mehdaoui B, Tan RP, Meffre A, et al. Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: theoretical and experimental results. Phys Rev B. 2013;87(17):174419.
  • Asensio JM, Marbaix J, Mille N, et al. To heat or not to heat: a study of the performances of iron carbide nanoparticles in magnetic heating. Nanoscale. 2019;11(12):5402–5411.
  • Castellanos-Rubio I, Rodrigo I, Munshi R, et al. Outstanding heat loss via nano-octahedra above 20 nm in size: from wustite-rich nanoparticles to magnetite single-crystals. Nanoscale. 2019;11(35):16635–16649.
  • Cabrera D, Coene A, Leliaert J, et al. Dynamical magnetic response of iron oxide nanoparticles inside live cells. ACS Nano. 2018;12(3):2741–2752.
  • Castellanos-Rubio I, Rodrigo I, Olazagoitia-Garmendia A, et al. Highly reproducible hyperthermia response in water, agar, and cellular environment by discretely PEGylated magnetite nanoparticles. ACS Appl Mater Interfaces. 2020;12(25):27917–27929.
  • Lenox P, Plummer LK, Paul P, et al. High-frequency and high-field hysteresis loop tracer for magnetic nanoparticle characterization. IEEE Magn Lett. 2018;9:1–5.
  • Veverka M, Závěta K, Kaman O, et al. Magnetic heating by silica-coated Co–Zn ferrite particles. J Phys D: Appl Phys. 2014;47(6):065503.
  • Gudoshnikov SA, Liubimov BY, Usov NA. Hysteresis losses in a dense superparamagnetic nanoparticle assembly. AIP Adv. 2012;2(1):012143.
  • Kobayashi H, Ueda K, Tomitaka A, et al. Self-heating property of magnetite nanoparticles dispersed in solution. IEEE Trans Magn. 2011;47(10):4151–4154.
  • Veverka M, Veverka P, Kaman O, et al. Magnetic heating by cobalt ferrite nanoparticles. Nanotechnology. 2007;18(34):345704.
  • Mehdaoui B, Meffre A, Carrey J, et al. Optimal size of nanoparticles for magnetic hyperthermia: a combined theoretical and experimental study. Adv Funct Mater. 2011;21(23):4573–4581.
  • Suto M, Hirota Y, Mamiya H, et al. Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J Magn Magn Mater. 2009;321(10):1493–1496.
  • Ota S, Kitaguchi R, Takeda R, et al. Rotation of magnetization derived from brownian relaxation in magnetic fluids of different viscosity evaluated by dynamic hysteresis measurements over a wide frequency range. Nanomaterials. 2016;6(9):170.
  • Stauffer P, Sneed P, Hashemi H, et al. Practical induction heating coil designs for clinical hyperthermia with ferromagnetic implants. IEEE Trans Biomed Eng. 1994;41(1):17–28.
  • Bordelon DE, Goldstein RC, Nemkov VS, et al. Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications. IEEE Trans Magn. 2012;48(1):47–52.
  • Gudoshnikov SA, Liubimov BY, Sitnov YS, et al. AC magnetic technique to measure specific absorption rate of magnetic nanoparticles. J Supercond Nov Magn. 2013;26(4):857–860.
  • Mehdaoui B, Carrey J, Stadler M, et al. Influence of a transverse static magnetic field on the magnetic hyperthermia properties and high-frequency hysteresis loops of ferromagnetic FeCo nanoparticles. Appl Phys Lett. 2012;100(5):052403.
  • Zeisberger M, Dutz S, MüLler R, et al. Metallic cobalt nanoparticles for heating applications. J Magn Magn Mater. 2007;311(1):224–227.
  • Bertotti G. otti, hysteresis in magnetism for physicist, material scientists, and eng. San Diego, CA: Academic Press; 1998.
  • Garaio E, Sandre O, Collantes J-M, et al. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry. Nanotechnology. 2015;26(1):015704.
  • Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater. 2002;252:370–374. Nov.
  • Carrey J, Mehdaoui B, Respaud M. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys. 2011;109(8):083921.
  • Brown WF. Thermal fluctuations of a single-domain particle. Phys Rev. 1963;130(5):1677–1686.
  • Mamiya H, Jeyadevan B. Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields. Sci Rep. 2011;1:157–157.
  • Fernández van Raap MB, Mendoza Zélis P, Coral DF, et al. Self organization in oleic acid-coated CoFe2O4 colloids: a SAXS study. J Nanopart Res. 2012;14(9):1072.
  • Usov NA, Liubimov BY. Dynamics of magnetic nanoparticle in a viscous liquid: application to magnetic nanoparticle hyperthermia. J Appl Phys. 2012;112(2):023901.
  • Raikher YL, Stepanov VI. Absorption of AC field energy in a suspension of magnetic dipoles. J Magn Magn Mater. 2008;320(21):2692–2695.
  • Yoshida T, Enpuku K. Simulation and quantitative clarification of AC susceptibility of magnetic fluid in nonlinear brownian relaxation region. Jpn J Appl Phys. 2009;48(12):127002.
  • Mamiya H. “Recent Advances in Understanding Magnetic Nanoparticles in AC Magnetic Fields and Optimal Design for Targeted Hyperthermia,” 2013. ISSN: 1687-4110 Library Catalog: www.hindawi.com. Pages: e752973 Publisher: Hindawi Volume: 2013.
  • Muela A, Muñoz D, Martín-Rodríguez R, et al. Optimal parameters for hyperthermia treatment using biomineralized magnetite nanoparticles: theoretical and experimental approach. J Phys Chem C. 2016;120(42):24437–24448.
  • Glaria A, Soulé S, Hallali N, et al. Silica coated iron nanoparticles: synthesis, interface control, magnetic and hyperthermia properties. RSC Adv. 2018;8(56):32146–32156.
  • Castellanos-Rubio I, Insausti M, Garaio E, et al. Fe3O4 nanoparticles prepared by the seeded-growth route for hyperthermia:electron magnetic resonance as a key tool to evaluate size distribution in magnetic nanoparticles. Nanoscale. 2014;6(13):7542–7552.
  • Usov NA, Grebenshchikov YB. Hysteresis loops of an assembly of superparamagnetic nanoparticles with uniaxial anisotropy. J Appl Phys. 2009;106(2):023917.
  • Hergt R, Dutz S, Röder M. Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys: Condens Matter. 2008;20(38):385214.
  • Vreeland EC, Watt J, Schober GB, et al. Enhanced nanoparticle size control by extending LaMer’s mechanism. Chem Mater. 2015;27(17):6059–6066.
  • Usov NA, BarandiaráN JM. Magnetic nanoparticles with combined anisotropy. J Appl Phys. 2012;112(5):053915.
  • Marcano L, Muñoz D, Martín-Rodríguez R, et al. Magnetic study of Co-doped magnetosome chains. J Phys Chem C. 2018;122(13):7541–7550.
  • Aquino VRR, Figueiredo LC, Coaquira JAH, et al. Magnetic interaction and anisotropy axes arrangement in nanoparticle aggregates can enhance or reduce the effective magnetic anisotropy. J Magn Magn Mater. 2020;498:166170.
  • Atkinson WJ, Brezovich IA, Chakraborty DP. “Usable Frequencies in Hyperthermia with Thermal Seeds,” IEEE Transactions on Biomedical Engineering, vol. BME-31, pp. 70–75, Jan. 1984. Conference Name: IEEE Transactions on Biomedical Engineering.
  • Brezovich I. Low frequency hyperthermia: capacitive and ferromagnetic thermoseed methods. Medical Physics Monograph. 1988;16:82–111.