2,367
Views
62
CrossRef citations to date
0
Altmetric
Articles

Understanding the thermal properties of amorphous solids using machine-learning-based interatomic potentials

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 866-880 | Received 14 Nov 2017, Accepted 22 Feb 2018, Published online: 13 Mar 2018

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (1)

Lijian Song, Youchen Zhang, Jin Zhan, Ying An, Weimin Yang, Jing Tan & Lisheng Cheng. (2022) Interfacial thermal resistance in polymer composites: a molecular dynamic perspective. Molecular Simulation 48:10, pages 902-925.
Read now

Articles from other publishers (61)

Paul Desmarchelier, Valentina M. Giordano, Jean-Yves Raty & Konstantinos Termentzidis. (2023) a-C/GeTe superlattices: Effect of interfacial impedance adaptation modeling on the thermal properties. Journal of Applied Physics 134:18.
Crossref
Cas van der Oord, Matthias Sachs, Dávid Péter Kovács, Christoph Ortner & Gábor Csányi. (2023) Hyperactive learning for data-driven interatomic potentials. npj Computational Materials 9:1.
Crossref
Haoyang Fu, Ke Li, Chenfei Zhang, Jianghong Zhang, Jiyuan Liu, Xi Chen, Guoliang Chen, Yongyang Sun, Shuzhou Li & Lan Ling. (2023) Machine-Learning-Assisted Optimization of a Single-Atom Coordination Environment for Accelerated Fenton Catalysis. ACS Nano 17:14, pages 13851-13860.
Crossref
Trent Barnard & Gabriele C. Sosso. (2023) Combining machine learning and molecular simulations to predict the stability of amorphous drugs. The Journal of Chemical Physics 159:1.
Crossref
Michele Simoncelli, Francesco Mauri & Nicola Marzari. (2023) Thermal conductivity of glasses: first-principles theory and applications. npj Computational Materials 9:1.
Crossref
Yue Lou, Xiaokun Li, Zhan Shi, Hao Zhou, Tianli Feng & Biao Xu. (2023) General Syntheses of High-Performance Thermoelectric Nanostructured Solids without Post-Synthetic Ligand Stripping. Nano Letters 23:11, pages 5317-5325.
Crossref
Mi Qin, Xuemei Zhang, Jianbo Zhu, Yuming Yang, Zhuoyang Ti, Yaoling Shen, Xianlong Wang, Xiaobing Liu & Yongsheng Zhang. (2023) A machine learning methodology to investigate the lattice thermal conductivity of defected PbTe. Journal of Materials Chemistry A 11:20, pages 10612-10627.
Crossref
Akshay Krishna Ammothum Kandy, Kevin Rossi, Alexis Raulin-Foissac, Gaétan Laurens & Julien Lam. (2023) Comparing transferability in neural network approaches and linear models for machine-learning interaction potentials. Physical Review B 107:17.
Crossref
Daria Szewczyk, Alexander I. Krivchikov, Maksym S. Barabashko, Alexander V. Dolbin, Nikolay A. Vinnikov, Razet Basnukaeva, Grzegorz Chajewski & Andrzej Jeżowski. (2023) Universal behavior of low-temperature heat capacity of acrylonitrile-butadiene-styrene thermoplastic polymer and its composite with graphene oxide. Low Temperature Physics 49:5, pages 593.
Crossref
Trent Barnard, Steven Tseng, James P. Darby, Albert P. Bartók, Anders Broo & Gabriele C. Sosso. (2023) Leveraging genetic algorithms to maximise the predictive capabilities of the SOAP descriptor. Molecular Systems Design & Engineering 8:3, pages 300-315.
Crossref
Han Liu, Zhangji Zhao, Qi Zhou, Ruoxia Chen, Kai Yang, Zhe Wang, Longwen Tang & Mathieu Bauchy. (2022) Challenges and opportunities in atomistic simulations of glasses: a review. Comptes Rendus. Géoscience 354:S1, pages 35-77.
Crossref
Sunyoung Im, Hyungjun Kim, Wonbae Kim, Hayoung Chung & Maenghyo Cho. (2022) Discovering constitutive equations of crystal structures by sparse identification. International Journal of Mechanical Sciences 236, pages 107756.
Crossref
Lei Yang & Bing-Yang Cao. (2022) Significant Anharmonicity of Thermal Transport in Amorphous Silica at High Temperature. physica status solidi (RRL) – Rapid Research Letters 16:11.
Crossref
Man Li, Lingyun Dai & Yongjie Hu. (2022) Machine Learning for Harnessing Thermal Energy: From Materials Discovery to System Optimization. ACS Energy Letters 7:10, pages 3204-3226.
Crossref
Jacek Goniakowski, Sarath Menon, Gaétan Laurens & Julien Lam. (2022) Nonclassical Nucleation of Zinc Oxide from a Physically Motivated Machine-Learning Approach. The Journal of Physical Chemistry C 126:40, pages 17456-17469.
Crossref
Fernando A. Otero, Facundo I. Altuna & Carlos A. Chiuro. (2022) A FEM/AI Strategy for Thermal Characterization of an Epoxy Nanocomposite via a Laser-based Nondestructive Testing Experiment. A FEM/AI Strategy for Thermal Characterization of an Epoxy Nanocomposite via a Laser-based Nondestructive Testing Experiment.
Babak Valipour Goodarzi & Ahmad Reza Bahramian. (2021) Applying machine learning for predicting thermal conductivity coefficient of polymeric aerogels. Journal of Thermal Analysis and Calorimetry 147:11, pages 6227-6238.
Crossref
Erhai Hu, Ian P. Seetoh & Chang Quan Lai. (2022) Machine learning assisted investigation of defect influence on the mechanical properties of additively manufactured architected materials. International Journal of Mechanical Sciences 221, pages 107190.
Crossref
Han Wei, Hua Bao & Xiulin Ruan. (2022) Perspective: Predicting and optimizing thermal transport properties with machine learning methods. Energy and AI 8, pages 100153.
Crossref
Ashutosh Giri, Connor J. Dionne & Patrick E. Hopkins. (2022) Atomic coordination dictates vibrational characteristics and thermal conductivity in amorphous carbon. npj Computational Materials 8:1.
Crossref
Chaochao Gao, Xin Min, Minghao Fang, Tianyi Tao, Xiaohong Zheng, Yangai Liu, Xiaowen Wu & Zhaohui Huang. (2021) Innovative Materials Science via Machine Learning. Advanced Functional Materials 32:1.
Crossref
Lei Yang & Bing-Yang Cao. (2021) Thermal transport of amorphous phase change memory materials using population-coherence theory: a first-principles study. Journal of Physics D: Applied Physics 54:50, pages 505302.
Crossref
M J Leng, B H Wu, A J Lu, L C Wu, C R Wang & Z T Song. (2021) Effect of off-stoichiometry on the thermal conductivity of amorphous GeTe. Physica Scripta 96:12, pages 125730.
Crossref
Lihong Han, Xingrun Chen, Qian Wang, Yingjie Chen, Mingfei Xu, Liyuan Wu, Changcheng Chen, Pengfei Lu & Pengfei Guan. (2021) Neural network potential for studying the thermal conductivity of Sn. Computational Materials Science 200, pages 110829.
Crossref
Wei Yu, Chaoyue Ji, Xuhao Wan, Zhaofu Zhang, John Robertson, Sheng Liu & Yuzheng Guo. (2021) Machine‐learning‐based interatomic potentials for advanced manufacturing. International Journal of Mechanical System Dynamics 1:2, pages 159-172.
Crossref
Austin M. Wallace & Ryan C. Fortenberry. (2021) Computational UV spectra for amorphous solids of small molecules. Physical Chemistry Chemical Physics 23:42, pages 24413-24420.
Crossref
Yanguang Zhou, Baoling Huang & Bing-Yang Cao. (2021) Vibrational modes with long mean free path and large volumetric heat capacity drive higher thermal conductivity in amorphous zeolitic imidazolate Framework-4. Materials Today Physics 21, pages 100516.
Crossref
Xin Qian & Ronggui Yang. (2021) Machine learning for predicting thermal transport properties of solids. Materials Science and Engineering: R: Reports 146, pages 100642.
Crossref
Volker L. Deringer, Albert P. Bartók, Noam Bernstein, David M. Wilkins, Michele Ceriotti & Gábor Csányi. (2021) Gaussian Process Regression for Materials and Molecules. Chemical Reviews 121:16, pages 10073-10141.
Crossref
Jaehyun Kim, Donghoon Kang, Sangbum Kim & Ho Won Jang. (2021) Catalyze Materials Science with Machine Learning. ACS Materials Letters 3:8, pages 1151-1171.
Crossref
Boris Kozinsky & David J. Singh. (2021) Thermoelectrics by Computational Design: Progress and Opportunities. Annual Review of Materials Research 51:1, pages 565-590.
Crossref
Magali Benoit, Jonathan Amodeo, Ségolène Combettes, Ibrahim Khaled, Aurélien Roux & Julien Lam. (2020) Measuring transferability issues in machine-learning force fields: the example of gold–iron interactions with linearized potentials. Machine Learning: Science and Technology 2:2, pages 025003.
Crossref
Pascal Friederich, Florian Häse, Jonny Proppe & Alán Aspuru-Guzik. (2021) Machine-learned potentials for next-generation matter simulations. Nature Materials 20:6, pages 750-761.
Crossref
Gaétan Laurens, Malalatiana Rabary, Julien Lam, Daniel Peláez & Abdul-Rahman Allouche. (2021) Infrared spectra of neutral polycyclic aromatic hydrocarbons based on machine learning potential energy surface and dipole mapping. Theoretical Chemistry Accounts 140:6.
Crossref
SangHui Kim & Joongoo Kang. (2021) General gauge symmetry in the theory and simulation of heat transport in nonsolid materials. Physical Review B 103:17.
Crossref
Junhyub Jeon, Namhyuk Seo, Hwi-Jun Kim, Min-Ha Lee, Hyun-Kyu Lim, Seung Bae Son & Seok-Jae Lee. (2021) Inverse Design of Fe-Based Bulk Metallic Glasses Using Machine Learning. Metals 11:5, pages 729.
Crossref
V.A. Konstantinov, A.I. Krivchikov, A.V. Karachevtseva & V.V. Sagan. (2021) Thermal transport in dynamically disordered phases of molecular crystals: A thermo activation mechanism. Solid State Communications 329, pages 114241.
Crossref
Yi Jiang, Dong Chen, Xin Chen, Tangyi Li, Guo-Wei Wei & Feng Pan. (2021) Topological representations of crystalline compounds for the machine-learning prediction of materials properties. npj Computational Materials 7:1.
Crossref
Mashroor S. Nitol, Doyl E. Dickel & Christopher D. Barrett. (2021) Artificial neural network potential for pure zinc. Computational Materials Science 188, pages 110207.
Crossref
Conrad W. Rosenbrock, Konstantin Gubaev, Alexander V. Shapeev, Livia B. Pártay, Noam Bernstein, Gábor Csányi & Gus L. W. Hart. (2021) Machine-learned interatomic potentials for alloys and alloy phase diagrams. npj Computational Materials 7:1.
Crossref
Caroline Desgranges & Jerome Delhommelle. (2021) Towards a machine learned thermodynamics: exploration of free energy landscapes in molecular fluids, biological systems and for gas storage and separation in metal–organic frameworks. Molecular Systems Design & Engineering 6:1, pages 52-65.
Crossref
Zhilong Song, Xiwen Chen, Fanbin Meng, Guanjian Cheng, Chen Wang, Zhongti Sun & Wan-Jian Yin. (2020) Machine learning in materials design: Algorithm and application*. Chinese Physics B 29:11, pages 116103.
Crossref
Ruiyang Li, Zeyu Liu, Andrew Rohskopf, Kiarash Gordiz, Asegun Henry, Eungkyu Lee & Tengfei Luo. (2020) A deep neural network interatomic potential for studying thermal conductivity of β -Ga2O3 . Applied Physics Letters 117:15.
Crossref
Janine George, Geoffroy Hautier, Albert P. Bartók, Gábor Csányi & Volker L. Deringer. (2020) Combining phonon accuracy with high transferability in Gaussian approximation potential models. The Journal of Chemical Physics 153:4.
Crossref
Xiaowei Xie, Kristin A. Persson & David W. Small. (2020) Incorporating Electronic Information into Machine Learning Potential Energy Surfaces via Approaching the Ground-State Electronic Energy as a Function of Atom-Based Electronic Populations. Journal of Chemical Theory and Computation 16:7, pages 4256-4270.
Crossref
Balaranjan Selvaratnam, Ranjit T. Koodali & Pere Miró. (2020) Prediction of optoelectronic properties of Cu 2 O using neural network potential . Physical Chemistry Chemical Physics 22:26, pages 14910-14917.
Crossref
Peng Kang, Zhongli Liu, Hakima Abou-Rachid & Hong Guo. (2020) Machine-Learning Assisted Screening of Energetic Materials. The Journal of Physical Chemistry A 124:26, pages 5341-5351.
Crossref
Yanhui Zhang, Alessandro Lunghi & Stefano Sanvito. (2020) Pushing the limits of atomistic simulations towards ultra-high temperature: A machine-learning force field for ZrB2. Acta Materialia 186, pages 467-474.
Crossref
Yen-Ju Wu, Tianzhuo Zhan, Zhufeng Hou, Lei Fang & Yibin Xu. (2020) Physical and chemical descriptors for predicting interfacial thermal resistance. Scientific Data 7:1.
Crossref
Amirreza Hashemi, Hasan Babaei & Sangyeop Lee. (2020) Effects of medium range order on propagon thermal conductivity in amorphous silicon. Journal of Applied Physics 127:4.
Crossref
Felix C. Mocanu, Konstantinos Konstantinou & Stephen R. Elliott. (2020) Nonequilibrium ab initio molecular-dynamics simulations of lattice thermal conductivity in irradiated glassy Ge2Sb2Te5 . Applied Physics Letters 116:3.
Crossref
Trent Barnard, Harry Hagan, Steven Tseng & Gabriele C. Sosso. (2020) Less may be more: an informed reflection on molecular descriptors for drug design and discovery. Molecular Systems Design & Engineering 5:1, pages 317-329.
Crossref
Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali Tishby, Leslie Vogt-Maranto & Lenka Zdeborová. (2019) Machine learning and the physical sciences. Reviews of Modern Physics 91:4.
Crossref
Volker L. Deringer, Miguel A. Caro & Gábor Csányi. (2019) Machine Learning Interatomic Potentials as Emerging Tools for Materials Science. Advanced Materials 31:46.
Crossref
G.C. Sosso & M. Bernasconi. (2019) Harnessing machine learning potentials to understand the functional properties of phase-change materials. MRS Bulletin 44:09, pages 705-709.
Crossref
Jonathan Schmidt, Mário R. G. Marques, Silvana Botti & Miguel A. L. Marques. (2019) Recent advances and applications of machine learning in solid-state materials science. npj Computational Materials 5:1.
Crossref
Eric R. Homer, Derek M. Hensley, Conrad W. Rosenbrock, Andrew H. Nguyen & Gus L. W. Hart. (2019) Machine-Learning Informed Representations for Grain Boundary Structures. Frontiers in Materials 6.
Crossref
Gabriel R Schleder, Antonio C M Padilha, Carlos Mera Acosta, Marcio Costa & Adalberto Fazzio. (2019) From DFT to machine learning: recent approaches to materials science–a review. Journal of Physics: Materials 2:3, pages 032001.
Crossref
Zachary H. Aitken, Viacheslav Sorkin & Yong-Wei Zhang. (2019) Atomistic modeling of nanoscale plasticity in high-entropy alloys. Journal of Materials Research 34:9, pages 1509-1532.
Crossref
Esther Forte, Fabian Jirasek, Michael Bortz, Jakob Burger, Jadran Vrabec & Hans Hasse. (2019) Digitalization in Thermodynamics. Chemie Ingenieur Technik 91:3, pages 201-214.
Crossref
Zak E. Hughes, Joseph C. R. ThackerAlex L. WilsonPaul L. A. Popelier. (2018) Description of Potential Energy Surfaces of Molecules Using FFLUX Machine Learning Models. Journal of Chemical Theory and Computation 15:1, pages 116-126.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.