2,367
Views
62
CrossRef citations to date
0
Altmetric
Articles

Understanding the thermal properties of amorphous solids using machine-learning-based interatomic potentials

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 866-880 | Received 14 Nov 2017, Accepted 22 Feb 2018, Published online: 13 Mar 2018

References

  • Balandin AA . Thermal properties of graphene and nanostructured carbon materials. Nat Mater. 2011 Jul;10:569–581.
  • Gotsmann B , Lantz MA . Quantized thermal transport across contacts of rough surfaces. Nat Mater. 2012 Oct;12:3460.
  • Beekman M , Morelli DT , Nolas GS . Better thermoelectrics through glass-like crystals. Nat Mater. 2015 Nov;14:1182–1185.
  • Russ B , Glaudell A , Urban JJ , et al . Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater. 2016 Aug;1:201650.
  • Kwon S , Zheng J , Wingert MC , et al . Unusually high and anisotropic thermal conductivity in amorphous silicon nanostructures. ACS Nano. 2017 Mar;11:2470–2476.
  • Shanker A , Li C , Kim G-H , et al . High thermal conductivity in electrostatically engineered amorphous polymers. Sci Adv. 2017 Jul;3:e1700342.
  • Wingert MC , Zheng J , Kwon S , et al . Thermal transport in amorphous materials: a review. Semicond Sci Technol. 2016;31(11):113003.
  • Cahill DG , Braun PV , Chen G , et al . Nanoscale thermal transport II. Appl Phys Rev. 2014 Jan;1:011305.
  • Tritt TT . Thermal conductivity: theory, properties, and applications New York (NY). Springer. 2004. DOI:10.1007/b136496
  • Dove MT . Introduction to the theory of lattice dynamics. J Neutron. 2011;12:123–159.
  • Ibach H , Lüth H . Solid-state physics, Berlin: Springer. Berlin Heidelberg. 2009. DOI:10.1007/978-3-540-93804-0
  • Sopu D , Kotakoski J , Albe K . Finite-size effects in the phonon density of states of nanostructured germanium: a comparative study of nanoparticles, nanocrystals, nanoglasses, and bulk phases. Phys Rev B. 2011 Jun;83:245416.
  • Donadio D , Galli G . Temperature dependence of the thermal conductivity of thin silicon nanowires. Nano Lett. 2010 Mar;10:847–851.
  • Allen PB , Feldman JL , Fabian J , et al . Diffusons, locons and propagons: character of atomic vibrations in amorphous Si. Philos Mag B. 1999 Nov;79:1715–1731.
  • Taraskin SN , Elliott SR . Ioffe-regel crossover for plane-wave vibrational excitations in vitreous silica. Phys Rev B. 2000 May;61:12031–12037.
  • Wooten F , Winer K , Weaire D . Computer generation of structural models of amorphous Si and Ge. Phys Rev Lett. 1985;54:1392–1395.
  • Würger A , Bodea D . Thermal conductivity by two-level systems in glasses. Chem Phys. 2004 Jan;296:301–306.
  • Pérez-Castañeda T , Rodríguez-Tinoco C , Rodríguez-Viejo J , et al . Suppression of tunneling two-level systems in ultrastable glasses of indomethacin. PNAS. 2014 Aug;111:11275–11280.
  • Cliffe MJ , Bartók AP , Kerber RN , et al . Structural simplicity as a restraint on the structure of amorphous silicon. Phys Rev B. 2017 Jun;95:224108.
  • Mi-tang W , Jin-shu C . Viscosity and thermal expansion of rare earth containing soda-lime-silicate glass. J Alloys Compd. 2010 Aug;504:273–276.
  • Baesso ML , Shen J , Snook RD . Time-resolved thermal lens measurement of thermal diffusivity of soda-lime glass. Chem Phys Lett. 1992 Sep;197:255–258.
  • Oguma M , Fairbanks CJ , Hasselman DPH . Thermal stress fracture of brittle ceramics by conductive heat transfer in a liquid metal quenching medium. J Am Ceram Soc. 1986 Apr;69:C--87.
  • Kang J , Han B . First-principles study on the thermal stability of LiNiO2 materials coated by amorphous Al2O3 with atomic layer thickness. ACS Appl Mater Interfaces. 2015 Jun;7:11599–11603.
  • Nitta N , Wu F , Lee JT , et al . Li-ion battery materials: present and future. Mater Today. 2015 Jun;18:252–264.
  • Terny S , Frechero M . Study of phosphate polyanion electrodes and their performance with glassy electrolytes: potential application in lithium ion solid-state batteries. In: Tiwari A , Kuralay F , Uzun L . editors. Advanced electrode materials. Beverly (MA): John Wiley \ & Sons; 2016. p. 255–258.
  • Pershina SV , Raskovalov AA , Antonov BD , et al. The transport and thermal properties of glassy LiPO3/crystalline Al2O3 (ZrO2) composite electrolytes. Ionics. 2018 Jan;24:133–138.
  • Rodrigues M-TF , Babu G , Gullapalli H , et al . A materials perspective on Li-ion batteries at extreme temperatures. Nat Energy. 2017 Jul;2:17108.
  • Raoux S , Welnic W , Ielmini D . Phase change materials and their application to nonvolatile memories. Chem Rev. 2010 Jan;110:240–267.
  • Kolobov AV , Tominaga J , editors. Chalcogenides: metastability and phase change phenomena. Berlin: Springer; 2012.
  • Wuttig M , Yamada N . Phase-change materials for rewriteable data storage. Nat Mater. 2007 Nov;6:824–832.
  • Raoux S , Wuttig M . Phase change materials: science and applications. New York (NY): Springer; 2010.
  • Siegert KS , Lange FRL , Sittner ER , et al . Impact of vacancy ordering on thermal transport in crystalline phase-change materials. Rep Prog Phys. 2015;78(1):013001.
  • Baroni S , de Gironcoli S , Dal Corso A , et al. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys. 2001 Jul;73:515–562.
  • Tuckerman ME , Martyna GJ . Understanding modern molecular dynamics: techniques and applications. J Phys Chem B. 2000 Jan;104:159–178.
  • Barnett RN , Cleveland CL , Landman U . Structure and dynamics of a metallic glass: molecular-dynamics simulations. Phys Rev Lett. 1985 Nov;55:2035–2038.
  • Ercolessi F , Tosatti E , Parrinello M . Au (100) surface reconstruction. Phys Rev Lett. 1986 Aug;57:719–722.
  • Ackland GJ , Thetford R . An improved N-body semi-empirical model for body-centred cubic transition metals. Philos Mag A. 1987 Jul;56:15–30.
  • Sutton AP , Chen J . Long-range Finnis-Sinclair potentials. Philos Mag Lett. 1990 Mar;61:139–146.
  • Daw MS , Foiles SM , Baskes MI . The embedded-atom method: a review of theory and applications. Mater Sci Rep. 1993 Mar;9:251–310.
  • Gulenko A , Chungong LF , Gao J , et al . Atomic structure of Mg-based metallic glasses from molecular dynamics and neutron diffraction. Phys Chem Chem Phys. 2017 Mar;19:8504–8515.
  • Tangney P , Scandolo S . An \textit{ab initio} parametrized interatomic force field for silica. J Chem Phys. 2002 Oct;117:8898–8904.
  • Soules TF , Gilmer GH , Matthews MJ , et al . Silica molecular dynamic force fields-a practical assessment. J Non-Cryst Solids. 2011 Mar;357:1564–1573.
  • Cowen BJ , El MS . On force fields for molecular dynamics simulations of crystalline silica. Comput Mater Sci. 2015 Sep;107:88–101.
  • Pastewka L , Pou P , Pérez R , et al . Describing bond-breaking processes by reactive potentials: importance of an environment-dependent interaction range. Phys Rev B. 2008 Oct;78:161402.
  • Mjolsness E , DeCoste D . Machine learning for science: state of the art and future prospects. Science. 2001 Sep;293:2051–2055.
  • Jordan MI , Mitchell TM . Machine learning: trends, perspectives, and prospects. Science. 2015 Jul;349:255–260.
  • Biamonte J , Wittek P , Pancotti N , et al . Quantum machine learning. Nature. 2017 Sep;549:195–202.
  • Savage N . Machine learning: calculating disease. Nature. 2017 Oct;550:S115–S117.
  • Behler J . Perspective: machine learning potentials for atomistic simulations. J Chem Phys. 2016 Nov;145:170901.
  • van Roekeghem A , Carrete J , Oses C , et al . High-throughput computation of thermal conductivity of high-temperature solid phases: the case of oxide and fluoride perovskites. Phys Rev X. 2016 Dec;6:041061.
  • Gaultoi MW , Oliynyk AO , Mar A , et al . Perspective: web-based machine learning models for real-time screening of thermoelectric materials properties. APL Mater. 2016 May;4:053213.
  • Thompson AP , Swiler LP , Trott CR , et al . Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J Comput Phys. 2015 Mar;285:316–330.
  • Balabin RM , Lomakina EI . Support vector machine regression (LS-SVM)-an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data? Phys Chem Chem Phys. 2011 Jun;13:11710–11718.
  • Bartók AP , Csányi G . Gaussian approximation potentials: a brief tutorial introduction. Int J Quantum Chem. 2015 Aug;115:1051–1057.
  • Blank TB , Brown SD , Calhoun AW , et al . Neural network models of potential energy surfaces. J. Chem. Phys. 1995 Sep;103:4129–4137.
  • Handley CM , Behler J . Next generation interatomic potentials for condensed systems. Eur Phys J B. 2014 Jul;87:152.
  • Rupp M , Tkatchenko A , Müller K-R , et al . Fast and accurate modeling of molecular atomization energies with machine learning. Phys Rev Lett. 2012 Jan;108:058301.
  • Manzhos S , Carrington T . A random-sampling high dimensional model representation neural network for building potential energy surfaces. J Chem Phys. 2006 Aug;125:084109.
  • Hobday S , Smith R , Belbruno J . Applications of neural networks to fitting interatomic potential functions. Model Simul Mater Sci Eng. 1999;7(3):397.
  • Behler J . Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Phys Chem Chem Phys. 2011 Oct;13:17930–17955.
  • Handley CM , Popelier PLA . Potential energy surfaces fitted by artificial neural networks. J Phys Chem A. 2010 Mar;114:3371–3383.
  • Rupp M . Machine learning for quantum mechanics in a nutshell. Int J Quantum Chem. 2015 Aug;115:1058–1073.
  • MacLeod N , Benfield M , Culverhouse P . Time to automate identification. Nature. 2010 Sep;467:154–155.
  • Schramm S . Computer science: data analysis meets quantum physics. Nature. 2017 Oct;550:550339a.
  • Thompson LR . A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017 Nov:24621
  • Castelvecchi D . Artificial intelligence called in to tackle LHC data deluge. Nat News. 2015 Dec;528:18.
  • Silver D , Schrittwieser J , Simonyan K , et al . Mastering the game of Go without human knowledge. Nature. 2017 Oct;550:24270.
  • Li Z , Kermode JR , De Vita A . Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys Rev Lett. 2015 Mar;114:096405.
  • Huan TD , Batra R , Chapman J , et al. A universal strategy for the creation of machine learning-based atomistic force fields. npj Comput Mater. 2017 Sep;3: Article No. 37.
  • Podryabinkin EV , Shapeev AV . Active learning of linearly parametrized interatomic potentials. Comput Mater Sci. 2017 Dec;140:171–180.
  • Behler J . Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J Chem Phys. 2011 Feb;134:074106.
  • Ooi N , Rairkar A , Adams JB . Density functional study of graphite bulk and surface properties. Carbon. 2006 Feb;44:231–242.
  • Kganyago KR , Ngoepe PE . Effects of local and gradient-corrected density approximations on the prediction of the intralayer lattice distance c, in graphite and LiC6 . Mol Sim. 1999 Feb;22:39–49.
  • Artrith N , Morawietz T , Behler J . High-dimensional neural-network potentials for multicomponent systems: applications to zinc oxide. Phys Rev B. 2011 Apr;83:153101.
  • Bartók AP , Kondor R , Csányi G . On representing chemical environments. Phys Rev B. 2013 May;87:184115.
  • Mahoney MW , Drineas P . CUR matrix decompositions for improved data analysis. PNAS. 2009 Jan;106:697–702.
  • Behler J , Parrinello M . Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett. 2007 Apr;98:146401.
  • Artrith N , Behler J . High-dimensional neural network potentials for metal surfaces: a prototype study for copper. Phys Rev B. 2012 Jan;85:045439.
  • Morawietz T , Singraber A , Dellago C , et al . How van der Waals interactions determine the unique properties of water. PNAS. 2016 Jul;113:8368–8373.
  • Bartók AP , Payne MC , Kondor R , et al . Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys Rev Lett. 2010 Apr;104:136403.
  • Szlachta WJ , Bartók AP , Csányi G . Accuracy and transferability of Gaussian approximation potential models for tungsten. Phys Rev B. 2014 Sep;90:104108.
  • Deringer VL , Csányi G . Machine learning based interatomic potential for amorphous carbon. Phys Rev B. 2017 Mar;95:094203.
  • Plimpton S . Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995 Mar;117:1–19.
  • Bartók AP , Gillan MJ , Manby FR , et al . Machine-learning approach for one- and two-body corrections to density functional theory: applications to molecular and condensed water. Phys Rev B. 2013 Aug;88:054104.
  • Smith JS , Isayev O , Roitberg AE . ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem Sci. 2017 Feb;8:3192–3203.
  • Gabardi S , Baldi E , Bosoni E , et al . Atomistic simulations of the crystallization and aging of GeTe nanowires. J Phys Chem C. 2017 Oct;121:23827–23838.
  • Wang CS , Klein BM , Krakauer H . Theory of magnetic and structural ordering in iron. Phys Rev Lett. 1985 Apr;54:1852–1855.
  • Grimme S . Seemingly simple stereoelectronic effects in alkane isomers and the implications for Kohn-Sham density functional theory. Angew Chem Int Ed. 2006 Jul;45:4460–4464.
  • George J , Reimann C , Deringer VL , et al . On the DFT ground state of crystalline bromine and iodine. ChemPhysChem. 2015 Mar;16:728–732.
  • Oró E , de Gracia A , Castell A , et al . Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl Energy. 2012 Nov;99:513–533.
  • Agyenim F , Hewitt N , Eames P , et al . A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable Sustainable Energy Rev. 2010 Feb;14:615–628.
  • Lencer D , Salinga M , Grabowski B , et al . A map for phase-change materials. Nat Mater. 2008 Nov;7:2330.
  • Wuttig M , Salinga M . Phase-change materials: fast transformers. Nat Mater. 2012 Mar;11:3288.
  • Deringer VL , Dronskowski R , Wuttig M . Microscopic complexity in phase-change materials and its role for applications. Adv Funct Mater. 2015 Oct;25:6343.
  • Akola J , Jones RO . Amorphous structures of Ge/Sb/Te alloys: density functional simulations. Phys Stat Solid B. 2012 Oct;249:1851.
  • Zhang W , Deringer VL , Dronskowski R , et al . Density-functional theory guided advances in phase-change materials and memories. MRS Bull. 2015 Oct;40:856.
  • Risk WP , Rettner CT , Raoux S . Thermal conductivities and phase transition temperatures of various phase-change materials measured by the 3ω method. Appl Phys Lett. 2009 Mar;94:101906.
  • Matsunaga T , Yamada N , Kojima R , et al . Phase-change materials: vibrational softening upon crystallization and its impact on thermal properties. Adv Funct Mater. 2011 Jun;21:2232–2239.
  • Lan R , Endo R , Kuwahara M , et al . Electrical and heat conduction mechanisms of GeTe alloy for phase change memory application. J Appl Phys. 2012 Sep;112:053712.
  • Campi D , Paulatto L , Fugallo G , et al . First-principles calculation of lattice thermal conductivity in crystalline phase change materials: GeTe, Sb2Te3, and Ge2Sb2Te5 . Phys Rev B. 2017 Jan;95:024311.
  • He Y , Donadio D , Galli G . Heat transport in amorphous silicon: interplay between morphology and disorder. Appl Phys Lett. 2011 Apr;98:144101.
  • He Y , Donadio D , Lee J-H , et al . Thermal transport in nanoporous silicon: interplay between disorder at mesoscopic and atomic scales. ACS Nano. 2011 Mar;5:1839–1844.
  • Caravati S , Bernasconi M , Kühne TD , et al . Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials. Appl Phys Lett. 2007 Oct;91:171906.
  • Mazzarello R , Caravati S , Angioletti-Uberti S , et al . Signature of tetrahedral Ge in the Raman spectrum of amorphous phase-change materials. Phys Rev Lett. 2010 Feb;104:085503.
  • Deringer VL , Zhang W , Lumeij M , et al . Bonding nature of local structural fragments in amorphous GeTe. Angew Chem Int Ed. 2014 Sep;53:10817–10820.
  • Sosso GC , Colombo J , Behler J , et al . Dynamical heterogeneity in the supercooled liquid state of the phase change material GeTe. J Phys Chem B. 2014 Nov;118:13621–13628.
  • Akola J , Larrucea J , Jones RO . Polymorphism in phase-change materials: melt-quenched and as-deposited amorphous structures in Ge2Sb2Te5 from density functional calculations. Phys Rev B. 2011 Mar;83:094113.
  • Upadhyay M , Abhaya S , Murugavel S , et al . Experimental evidence for presence of voids in phase change memory material. RSC Adv. 2013 Dec;4:3691–3700.
  • Sosso GC , Caravati S , Mazzarello R , et al . Raman spectra of cubic and amorphous Ge2Sb2Te5 from first principles. Phys Rev B. 2011 Apr;83:134201.
  • Fallica R , Varesi E , Fumagalli L , et al . Effect of nitrogen doping on the thermal conductivity of GeTe thin films. Phys Stat Solid RRL. 2013 Dec;7:1107–1111.
  • Bosse JL , Timofeeva M , Tovee PD , et al . Nanothermal characterization of amorphous and crystalline phases in chalcogenide thin films with scanning thermal microscopy. J Appl Phys. 2014 Oct;116:134904.
  • Park S , Park D , Jeong K , et al . Effect of the thermal conductivity on resistive switching in GeTe and Ge2Sb2Te5 nanowires. ACS Appl Mater Interfaces. 2015 Oct;7:21819–21827.
  • Kusiak A , Battaglia J-L , Noé P , et al . Thermal conductivity of carbon doped GeTe thin films in amorphous and crystalline state measured by modulated photo thermal radiometry. J Phys Conf Ser. 2016;745(3):032104.
  • Bosoni E , Sosso GC , Bernasconi M . Grüneisen parameters and thermal conductivity in the phase change compound GeTe. J Comput Electron. 2017 Aug;16:1–6.
  • Sosso GC , Miceli G , Caravati S , et al . Neural network interatomic potential for the phase change material GeTe. Phys Rev B. 2012 May;85:174103.
  • Sosso GC , Miceli G , Caravati S , et al . Fast crystallization of the phase change compound GeTe by large-scale molecular dynamics simulations. J Phys Chem Lett. 2013 Dec;4:4241–4246.
  • Sosso GC , Behler J , Bernasconi M . Atomic mobility in the overheated amorphous GeTe compound for phase change memories. Phys Stat Solid A. 2015 Oct;92:054201.
  • Sosso GC , Donadio D , Caravati S , et al . Thermal transport in phase-change materials from atomistic simulations. Phys Rev B. 2012 Sep;86:104301.
  • Fallica R , Battaglia J-L , Cocco S , et al . Thermal and electrical characterization of materials for phase-change memory cells. J Chem Eng Data. 2009 Jun;54:1698–1701.
  • Zhang S-N , He J , Zhu T-J , et al . Thermal conductivity and specific heat of bulk amorphous chalcogenides Ge20Te80-xSex (x = 0, 1, 2, 8). J Non-Cryst Solids. 2009 Jan;355:79–83.
  • Gabardi S , Caravati S , Sosso GC , et al . Microscopic origin of resistance drift in the amorphous state of the phase-change compound GeTe. Phys Rev B. 2015 Aug;92:054201.
  • McQuarrie D . Statistical mechanics. Sausalito (CA): University Science Books; 2000.
  • Schelling PK , Phillpot SR , Keblinski P . Comparison of atomic-level simulation methods for computing thermal conductivity. Phys Rev B. 2002 Apr;65:144306.
  • Helfand E . Transport coefficients from dissipation in a canonical ensemble. Phys Rev. 1960 Jul;119:1–9.
  • Lussetti E , Terao T , Müller-Plathe F . Nonequilibrium molecular dynamics calculation of the thermal conductivity of amorphous polyamide-6,6. J Phys Chem B. 2007 Oct;111:11516–11523.
  • Sääskilahti K , Oksanen J , Tulkki J , et al . Vibrational mean free paths and thermal conductivity of amorphous silicon from non-equilibrium molecular dynamics simulations. AIP Adv. 2016 Dec;6:121904.
  • Dongre B , Wang T , Madsen GKH . Comparison of the Green-Kubo and homogeneous non-equilibrium molecular dynamics methods for calculating thermal conductivity. Model Simul Mater Sci Eng. 2017 May;25(5):054001.
  • Müller-Plathe F . A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys. 1997 Apr;106:6082–6085.
  • Bird R , Stewart W , Lightfoot E . Transport phenomena. New York (NY): Wiley international edition, Wiley; 2007.
  • Campi D , Donadio D , Sosso GC , et al . Electron-phonon interaction and thermal boundary resistance at the crystal-amorphous interface of the phase change compound GeTe. J Appl Phys. 2015 Jan;117:015304.
  • McGaughey AJH , Kaviany M . Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation. Phys Rev B. 2004 Mar;69:094303.
  • Pang JWL , Buyers WJL , Chernatynskiy A , et al . Phonon lifetime investigation of anharmonicity and thermal conductivity of UO2 by neutron scattering and theory. Phys Rev Lett. 2013 Apr;110:157401.
  • Togo A , Chaput L , Tanaka I . Distributions of phonon lifetimes in Brillouin zones. Phys Rev B. 2015 Mar;91:094306.
  • Wang Y , Shang S-L , Fang H , et al . "First-principles calculations of lattice dynamics and thermal properties of polar solids," npj Comput. Mater. 2016 May;2:20166.
  • Allen PB , Feldman JL . Thermal conductivity of disordered harmonic solids. Phys Rev B. 1993 Nov;48:12581–12588.
  • Uda T . Atomic structure of amorphous silicon. Solid State Commun. 1987 Nov;64:837–841.
  • Treacy MMJ , Borisenko KB . The local structure of amorphous silicon. Science. 2012 Feb;335:950–953.
  • Pedersen A , Pizzagalli L , Jónsson H . Optimal atomic structure of amorphous silicon obtained from density functional theory calculations. New J Phys. 2017 Jun;19(6):063018.
  • Boschker JE , Wang R , Calarco R . GeTe: a simple compound blessed with a plethora of properties. CrystEngComm. 2017;19(36):5324–5335.
  • Majumdar A , Reddy P . Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces. Appl Phys Lett. 2004 May;84:4768–4770.
  • Robertson J . Diamond-like amorphous carbon. Mater Sci Eng R Rep. 2002 May;37:129–281.
  • Laurila T , Sainio S , Caro MA . Hybrid carbon based nanomaterials for electrochemical detection of biomolecules. Prog Mater Sci. 2017 Jul;88:499–594.
  • Tersoff J . Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys Rev Lett. 1988 Dec;261:2879–2882.
  • Brenner DW . Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B. 1990 Nov;42:9458–9471.
  • Pickard CJ , Needs RJ . \textit{Ab initio} random structure searching. J Phys Condens Matter. 2011 Jan;23:053201.
  • Deringer VL , Csányi G , Proserpio DM . Extracting crystal chemistry from amorphous carbon structures. ChemPhysChem. 2017 Apr;18:873–877.
  • Bosak A , Krisch M . Phonon density of states probed by inelastic x-ray scattering. Phys Rev B. 2005 Dec;72:224305.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.