1,077
Views
91
CrossRef citations to date
0
Altmetric
Original Articles

Effect of grain size on the susceptibility of martensitic steel to hydrogen-related failure

, &
Pages 21-29 | Received 10 Jun 2005, Accepted 18 Nov 2005, Published online: 21 Aug 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (3)

Katsutoshi Takashima, Ruoyu Han, Ken’ichi Yokoyama & Yoshimasa Funakawa. (2022) Continuousness of interactions between hydrogen and plastic deformation of ultra-high strength steel sheet consisting of ferrite and nanometer-sized precipitates. Philosophical Magazine Letters 102:10, pages 324-334.
Read now
Michihiko Nagumo & Kenichi Takai. (2020) Critical Assessment 38: Assessment of the intrinsic susceptibility to hydrogen embrittlement for qualification of steels. Materials Science and Technology 36:10, pages 1003-1011.
Read now
Daisuke Sasaki, Motomichi Koyama, Shigeru Hamada & Hiroshi Noguchi. (2015) Tensile properties of precracked tempered martensitic steel specimens tested at ultralow strain rates in high-pressure hydrogen atmosphere. Philosophical Magazine Letters 95:5, pages 260-268.
Read now

Articles from other publishers (88)

Yuhei Ogawa, Kazuhiro Kuriyama & Motomichi Koyama. (2024) Dual grain size-effects on hydrogen-assisted fatigue crack growth in 1 GPa-class medium-carbon martensitic steel. International Journal of Hydrogen Energy 50, pages 108-115.
Crossref
Yunfeng Jiang, Shu Huang, Jie Sheng, Qiang Liu, Emmanuel Agyenim-Boateng, Yunjian Song, Mingliang Zhu & Yongxiang Hu. (2023) Effect of microstructure evolution induced by LP on hydrogen permeation behavior of 316L stainless steel. AIP Advances 13:11.
Crossref
L.B. Peral, A. Díaz, V. Arniella, J. Belzunce, J.M. Alegre & I.I. Cuesta. (2023) Influence of hydrogen on the hydraulic fracture behavior of a 42CrMo4 steel welds: Effect of the prior austenite grain size. Engineering Fracture Mechanics 289, pages 109414.
Crossref
Binhan Sun, Xizhen Dong, Jianfeng Wen, Xian‐Cheng Zhang & Shan‐Tung Tu. (2023) Microstructure design strategies to mitigate hydrogen embrittlement in metallic materials. Fatigue & Fracture of Engineering Materials & Structures 46:8, pages 3060-3076.
Crossref
Ahjeong Lyu, Junghoon Lee, Jae-Hoon Nam, Minjeong Kim & Young-Kook Lee. (2023) Hydrogen absorption and embrittlement of martensitic medium-Mn steels. Corrosion Science 221, pages 111304.
Crossref
Takehide Senuma, Mitsuhiro Okayasu & Hardy Mohrbacher. (2023) Microstructural Control and Alloy Design for Improving the Resistance to Delayed Fracture of Ultrahigh-Strength Automotive Steel Sheets. Metals 13:8, pages 1368.
Crossref
Satoshi Mitomi, Hideaki Iwaoka & Shoichi Hirosawa. (2023) Hydrogen Embrittlement Mechanism of Ultrafine-grained Iron with Different Grain Sizes. ISIJ International 63:6, pages 1096-1106.
Crossref
Abbas Mohammadi, Payam Edalati, Makoto Arita, Jae Wung Bae, Hyoung Seop Kim & Kaveh Edalati. (2023) High strength and high ductility of a severely deformed high-entropy alloy in the presence of hydrogen. Corrosion Science 216, pages 111097.
Crossref
Reza Khatib Zadeh Davani, Mohammad Ali Mohtadi-Bonab, Sandeep Yadav, Ehsan Entezari, Jhon Freddy Aceros Cabezas & Jerzy Szpunar. (2023) Effect of Quench Tempering on Hydrogen Embrittlement and Corrosion Behavior of X100 Pipeline Steel. Metals 13:5, pages 841.
Crossref
Renata Latypova, Oskari Seppälä, Tun Tun Nyo, Timo Kauppi, Saara Mehtonen, Hannu Hänninen, Jukka Kömi & Sakari Pallaspuro. (2023) Influence of prior austenite grain structure on hydrogen-induced fracture in as-quenched martensitic steels. Engineering Fracture Mechanics, pages 109090.
Crossref
Michihiko NagumoMichihiko Nagumo. 2023. Fundamentals of Hydrogen Embrittlement. Fundamentals of Hydrogen Embrittlement 205 243 .
Hao Chen, Linlin Zhao, Shenghai Lu, Zhangguo Lin, Tong Wen & Zejun Chen. (2022) Progress and Perspective of Ultra-High-Strength Martensitic Steels for Automobile. Metals 12:12, pages 2184.
Crossref
A. Dreano, M. Alnajjar, F. Salvatore, J. Rech, C. Bosch, K. Wolski, G. Kermouche & F. Christien. (2022) Effect of ball-burnishing on hydrogen-assisted cracking of a martensitic stainless steel. International Journal of Hydrogen Energy 47:93, pages 39654-39665.
Crossref
Z.H. Cao, B.N. Zhang & M.X. Huang. (2022) Comparing hydrogen embrittlement behaviors of two press hardening steels: 2 GPa vs. 1.5 GPa grade. Journal of Materials Science & Technology 124, pages 109-115.
Crossref
Yi Luo, Wei Li, Peng-wei Zhou, Yuan-tao Xu, Hui-yong Pang, Ning Zhong, Hui-sheng Jiao & Xue-jun Jin. (2022) Effect of tempering on carbides and hydrogen embrittlement in E690 high strength marine structural steel. Journal of Iron and Steel Research International 29:10, pages 1669-1682.
Crossref
Ning Zhao, Yanlin He, Li Lin, Rendong Liu, Qiangqiang Zhao & Weisen Zheng. (2022) Strength-Toughness Balance and Hydrogen Embrittlement Susceptibility of a Precipitation-Strengthened Steel Adopted Tempering Process. Metals 12:9, pages 1534.
Crossref
Hanyu Li, Ranming Niu, Wei Li, Hongzhou Lu, Julie Cairney & Yi-Sheng Chen. (2022) Hydrogen in pipeline steels: Recent advances in characterization and embrittlement mitigation. Journal of Natural Gas Science and Engineering 105, pages 104709.
Crossref
Tomohiko Hojo, Yuki ShibayamaSaya Ajito, Motomichi Koyama & Eiji Akiyama. (2022) Hydrogen Embrittlement of High-Strength Steel Sheets高強度薄鋼板の水素脆化メカニズム. Materia Japan 61:7, pages 413-418.
Crossref
Ki-Wan Seo, Jin-Ha Hwang, Yun-Jae Kim, Ki-Seok Kim & Poh-Sang Lam. (2022) Fracture toughness prediction of hydrogen-embrittled materials using small punch test data in Hydrogen. International Journal of Mechanical Sciences 225, pages 107371.
Crossref
Masoud Moshtaghi, Bernd Loder, Mahdieh Safyari, Thomas Willidal, Tomohiko Hojo & Gregor Mori. (2022) Hydrogen trapping and desorption affected by ferrite grain boundary types in shielded metal and flux-cored arc weldments with Ni addition. International Journal of Hydrogen Energy 47:47, pages 20676-20683.
Crossref
Qingqing Sun, Jinhua Han, Jiaxing Li, Fahe Cao & Shuai Wang. (2022) Tailoring hydrogen embrittlement resistance of pure Ni by grain boundary engineering. Corrosion Communications 6, pages 48-51.
Crossref
Hao Luo, Yu Li, Wei Li, Shaoxiong Zhong, Chun Xu & Xiaoshuai Jia. (2022) Interactions of nanoprecipitates, metastable austenite, and Lüders banding in an ultra-low carbon medium Mn steel with abnormal strength dependence of hydrogen embrittlement. Materialia 22, pages 101380.
Crossref
Bo Liu, Xiaolin Liao, Yuanshou Tang, Yu Si, Yi Feng, Pengjun Cao, Qingwei Dai & Kejian Li. (2022) Effects of the Addition of Nb and V on the Microstructural Evolution and Hydrogen Embrittlement Resistance of High Strength Martensitic Steels. Scanning 2022, pages 1-9.
Crossref
Yuhao Wang, Haijun Wang, Lingxiao Li, Jiyan Liu, Pei Zhao & Zhiqiang Xu. (2022) The Effect of Symmetrically Tilt Grain Boundary of Aluminum on Hydrogen Diffusion. Metals 12:2, pages 345.
Crossref
Satoshi Mitomi, Hideaki Iwaoka & Shoichi Hirosawa. (2022) Hydrogen Embrittlement Mechanism of Ultrafine-grained Iron with Different Grain Sizes異なる結晶粒径をもつ超微細粒鉄の水素脆化機構. Tetsu-to-Hagane 108:11, pages 864-876.
Crossref
Renata Latypova, Tun Tun Nyo, Oskari Seppälä, Eric Fangnon, Yuriy Yagodzinskyy, Saara Mehtonen, Hannu Hänninen, Jukka Kömi & Sakari Pallaspuro. (2022) Effect of prior austenite grain morphology on hydrogen embrittlement behaviour under plastic straining in as-quenched 500 HBW steels. Procedia Structural Integrity 42, pages 871-878.
Crossref
Tuhin Das, Rohan Chakrabarty, Jun Song & Stephen Yue. (2022) Understanding microstructural influences on hydrogen diffusion characteristics in martensitic steels using finite element analysis (FEA). International Journal of Hydrogen Energy 47:2, pages 1343-1357.
Crossref
Takehide Senuma. 2022. Encyclopedia of Materials: Metals and Alloys. Encyclopedia of Materials: Metals and Alloys 26 36 .
Guilherme Antonelli Martiniano, José Eduardo Silveira Leal, Guilherme Soares Rosa, Waldek Wladimir Bose Filho, Marcelo Torres Piza Paes & Sinésio Domingues Franco. (2021) Effect of specific microstructures on hydrogen embrittlement susceptibility of a modified AISI 4130 steel. International Journal of Hydrogen Energy 46:73, pages 36539-36556.
Crossref
Tuhin Das, Salim V. Brahimi, Jun Song & Stephen Yue. (2021) A fast fracture approach to assess hydrogen embrittlement (HE) susceptibility and mechanism(s) of high strength martensitic steels. Corrosion Science 190, pages 109701.
Crossref
Marcus Vinícius Rezende Júnior, Marcelo Torres Piza Paes, Waldek Wladimir Bose Filho, Rosenda Valdés Arencibia & Sinésio Domingues Franco. (2021) Effect of Specimen Cross Section and Notch Radius on the Hydrogen Embrittlement Susceptibility of Tempered and Quenched AISI 4140 Steel. Journal of Testing and Evaluation 49:4, pages 20190330.
Crossref
L. Cho, P.E. Bradley, D.S. Lauria, M.J. Connolly, E.J. Seo, K.O. Findley, J.G. Speer, L. Golem & A.J. Slifka. (2021) Effects of hydrogen pressure and prior austenite grain size on the hydrogen embrittlement characteristics of a press-hardened martensitic steel. International Journal of Hydrogen Energy 46:47, pages 24425-24439.
Crossref
Kengo Kamei, Yuuki Koumura, Arnaud Macadre & Koichi Goda. (2021) Quantitative Evaluation of Solute Hydrogen Effect on Dislocation Density in a Low-carbon Stable Austenitic Stainless Steel. ISIJ International 61:5, pages 1736-1738.
Crossref
Jang Woong Jo, Hyun Joo Seo, Byung-In Jung, Sangwoo Choi & Chong Soo Lee. (2021) Effect of bainite fraction on hydrogen embrittlement of bainite/martensite steel. Materials Science and Engineering: A 814, pages 141226.
Crossref
Hyun Joo Seo, Jae Nam Kim, Jang Woong Jo & Chong Soo Lee. (2021) Effect of tempering duration on hydrogen embrittlement of vanadium-added tempered martensitic steel. International Journal of Hydrogen Energy 46:37, pages 19670-19681.
Crossref
Mitsuhiro Okayasu & Takafumi Fujiwara. (2021) Hydrogen embrittlement characteristics of hot-stamped 22MnB5 steel. International Journal of Hydrogen Energy 46:37, pages 19657-19669.
Crossref
Kentaro Kuwata, Yoshito Takemoto, Mitsuhiro Okayasu, Jian Bian & Takehide Senuma. (2021) Decarburizing Behavior and Its Effect on Mechanical Properties of Ultrahigh Strength Steel Sheets. ISIJ International 61:4, pages 1300-1308.
Crossref
Zheng Wang, Juanping Xu & Jinxu Li. (2020) Effect of heat treatment processes on hydrogen embrittlement in hot-rolled medium Mn steels. International Journal of Hydrogen Energy 45:38, pages 20004-20020.
Crossref
Zheng Wang, Bo Kan, Juanping Xu & Jinxu Li. (2020) The Effect of Second Tempering on Hydrogen Embrittlement of Ultra-High-Strength Steel. Metallurgical and Materials Transactions A 51:6, pages 2811-2821.
Crossref
Shu Huang, Donghui Ma, Jie Sheng, Emmanuel Agyenim-Boateng, Jiaxi Zhao & Jianzhong Zhou. (2020) Effects of laser peening on tensile properties and martensitic transformation of AISI 316L stainless steel in a hydrogen-rich environment. Materials Science and Engineering: A, pages 139543.
Crossref
Arnaud Macadre, Toshihiro Tsuchiyama & Setsuo Takaki. (2019) Control of hydrogen-induced failure in metastable austenite by grain size refinement. Materialia 8, pages 100514.
Crossref
Yu Du, Xiuhua Gao, Liangyun Lan, Xiangyu Qi, Hongyan Wu, Linxiu Du & R.D.K. Misra. (2019) Hydrogen embrittlement behavior of high strength low carbon medium manganese steel under different heat treatments. International Journal of Hydrogen Energy 44:60, pages 32292-32306.
Crossref
Teng An, Shujie Li, Jinglong Qu, Jie Shi, Shuai Zhang, Liqiang Chen, Shuqi Zheng & Feng Yang. (2019) Effects of shot peening on tensile properties and fatigue behavior of X80 pipeline steel in hydrogen environment. International Journal of Fatigue 129, pages 105235.
Crossref
Dazheng Zhang, Xiuhua Gao, Yu Du, Linxiu Du, Hongxuan Wang, Zhenguang Liu & Guanqiao Su. (2019) Effect of microstructure refinement on hydrogen-induced damage behavior of low alloy high strength steel for flexible riser. Materials Science and Engineering: A 765, pages 138278.
Crossref
Han-Seop Noh, Jee-Hyun Kang & Sung-Joon Kim. (2019) Effect of grain size on hydrogen embrittlement in stable austenitic high-Mn TWIP and high-N stainless steels. International Journal of Hydrogen Energy 44:45, pages 25076-25090.
Crossref
Motomichi Koyama, Kenshiro Ichii & Kaneaki Tsuzaki. (2019) Grain refinement effect on hydrogen embrittlement resistance of an equiatomic CoCrFeMnNi high-entropy alloy. International Journal of Hydrogen Energy 44:31, pages 17163-17167.
Crossref
Michihiko Nagumo & Kenichi Takai. (2019) The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview. Acta Materialia 165, pages 722-733.
Crossref
Takehide Senuma, Yoshito Takemoto & Tomohiko Hojo. (2019) Control of Heterogeneous Microstructure for Improving Delayed Fracture Resistance of Ultrahigh Strength Hot Stamping Steel Sheets超高強度ホットスタンピング材の耐遅れ破壊性向上の組織制御. Tetsu-to-Hagane 105:2, pages 173-181.
Crossref
Eren Billur & Takehide Senuma. 2019. Hot Stamping of Ultra High-Strength Steels. Hot Stamping of Ultra High-Strength Steels 105 129 .
S. A. Barannikova, A. G. Lunev, A. P. Malinovskii & L. B. Zuev. (2018) CHANGES IN ULTRASONIC VELOCITY AT HYDROGEN EMBRITTLEMENT OF HIGH-CHROMIUM STEEL. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture:1, pages 187-196.
Crossref
Li Lin, Bao-shun Li, Guo-ming Zhu, Yong-lin Kang & Ren-dong Liu. (2018) Effect of niobium precipitation behavior on microstructure and hydrogen induced cracking of press hardening steel 22MnB5. Materials Science and Engineering: A 721, pages 38-46.
Crossref
Sicong Shen, Xinfeng Li, Peng Zhang, Yanli Nan, Gongxian Yang & Xiaolong Song. (2017) Effect of solution-treated temperature on hydrogen embrittlement of 17-4 PH stainless steel. Materials Science and Engineering: A 703, pages 413-421.
Crossref
M. Béreš, L. Wu, L.P.M. Santos, M. Masoumi, F.A.M. da Rocha Filho, C.C. da Silva, H.F.G. de Abreu & M.J. Gomes da Silva. (2017) Role of lattice strain and texture in hydrogen embrittlement of 18Ni (300) maraging steel. International Journal of Hydrogen Energy 42:21, pages 14786-14793.
Crossref
Samantha K. Lawrence, Yuriy Yagodzinskyy, Hannu Hänninen, Esa Korhonen, Filip Tuomisto, Zachary D. Harris & Brian P. Somerday. (2017) Effects of grain size and deformation temperature on hydrogen-enhanced vacancy formation in Ni alloys. Acta Materialia 128, pages 218-226.
Crossref
Junjie Sun, Tao Jiang, Yu Sun, Yingjun Wang & Yongning Liu. (2017) A lamellar structured ultrafine grain ferrite-martensite dual-phase steel and its resistance to hydrogen embrittlement. Journal of Alloys and Compounds 698, pages 390-399.
Crossref
Takehide SENUMA. (2017) Metallurgy of Hot Stamping Technology for Press Engineers. Journal of the Japan Society for Technology of Plasticity 58:682, pages 1021-1026.
Crossref
Jeffrey Venezuela, Qinglong Liu, Mingxing Zhang, Qingjun Zhou & Andrej Atrens. (2016) A review of hydrogen embrittlement of martensitic advanced high-strength steels. Corrosion Reviews 34:3, pages 153-186.
Crossref
A V Bochkareva, S A Barannikova, Yu V Li, A G Lunev & L B Zuev. (2016) Autowave process of the localized plastic deformation of high-chromium steel saturated with hydrogen. Journal of Physics: Conference Series 722, pages 012024.
Crossref
Jilan Yang, Feng Huang, Zhenghong Guo, Yonghua Rong & Nailu Chen. (2016) Effect of retained austenite on the hydrogen embrittlement of a medium carbon quenching and partitioning steel with refined microstructure. Materials Science and Engineering: A 665, pages 76-85.
Crossref
Svetlana Barannikova, Anna Bochkareva, Alexey Lunev, Galina Shlyakhova, Yulia Li & Lev Zuev. On the plastic flow localization of martensitic stainless steel saturated with hydrogen. On the plastic flow localization of martensitic stainless steel saturated with hydrogen.
Michihiko NagumoMichihiko Nagumo. 2016. Fundamentals of Hydrogen Embrittlement. Fundamentals of Hydrogen Embrittlement 167 196 .
Rongjie Song, Nina Fonstein, Narayan Pottore, Hyun Jo Jun, Debanshu Bhattacharya & Steve Jansto. 2016. HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015. HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015 541 547 .
Q. Wu & M.A. Zikry. (2015) Prediction of diffusion assisted hydrogen embrittlement failure in high strength martensitic steels. Journal of the Mechanics and Physics of Solids 85, pages 143-159.
Crossref
Rongjie Song, Nina Fonstein, Narayan Pottore, Hyun Jo Jun, Debanshu Bhattacharya & Steve Jansto. 2015. HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015. HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015 541 547 .
Arnaud Macadre, Nobuo Nakada, Toshihiro Tsuchiyama & Setsuo Takaki. (2015) Critical grain size to limit the hydrogen-induced ductility drop in a metastable austenitic steel. International Journal of Hydrogen Energy 40:33, pages 10697-10703.
Crossref
Hirokuni Fuchigami. (2015) Effect of Surface Heat Treatment on Corrosion-Related Failure of the Suspension Spring. SAE International Journal of Materials and Manufacturing 8:3, pages 744-748.
Crossref
Nina FonsteinNina Fonstein. 2015. Advanced High Strength Sheet Steels. Advanced High Strength Sheet Steels 259 274 .
Tomoki Doshida & Kenichi Takai. (2014) Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content. Acta Materialia 79, pages 93-107.
Crossref
Svetlana A. Barannikova, Aleksey G. Lunev, Mikhail V. Nadezhkin & Lev B. Zuev. (2014) Effect of Hydrogen on Plastic Strain Localization of Construction Steels. Advanced Materials Research 880, pages 42-47.
Crossref
T. Doshida, M. Nakamura, H. Saito, T. Sawada & K. Takai. (2013) Hydrogen-enhanced lattice defect formation and hydrogen embrittlement of cyclically prestressed tempered martensitic steel. Acta Materialia 61:20, pages 7755-7766.
Crossref
Yan Liu, Maoqiu Wang & Guoquan Liu. (2013) Hydrogen trapping in high strength martensitic steel after austenitized at different temperatures. International Journal of Hydrogen Energy 38:33, pages 14364-14368.
Crossref
Hiroyoshi Momida, Yusuke Asari, Yoshimichi Nakamura, Yoshitaka Tateyama & Takahisa Ohno. (2013) Hydrogen-enhanced vacancy embrittlement of grain boundaries in iron. Physical Review B 88:14.
Crossref
Takafumi Ono, Tsukasa Hosomi, Yoshito Takemoto & Takehide Senuma. (2013) Influence of Various Factors on the Refinement of Martensitic Microstructures of Hot Stamped Steel Components. Tetsu-to-Hagane 99:7, pages 475-483.
Crossref
Koichi Takasawa, Ryo Ikeda, Noboru Ishikawa & Ryoji Ishigaki. (2012) Effects of grain size and dislocation density on the susceptibility to high-pressure hydrogen environment embrittlement of high-strength low-alloy steels. International Journal of Hydrogen Energy 37:3, pages 2669-2675.
Crossref
Tomoki Doshida, Hiroshi Suzuki, Kenichi Takai, Nagayasu Oshima & Tetsuya Hirade. (2012) Enhanced Lattice Defect Formation Associated with Hydrogen and Hydrogen Embrittlement under Elastic Stress of a Tempered Martensitic Steel. Tetsu-to-Hagane 98:5, pages 197-206.
Crossref
Akinobu Shibata, Hiroshi Takahashi & Nobuhiro Tsuji. (2012) Microstructural and Crystallographic Features of Hydrogen-related Crack Propagation in Low Carbon Martensitic Steel. ISIJ International 52:2, pages 208-212.
Crossref
Tomoki Doshida, Hiroshi Suzuki, Kenichi Takai, Nagayasu Oshima & Tetsuya Hirade. (2012) Enhanced Lattice Defect Formation Associated with Hydrogen and Hydrogen Embrittlement under Elastic Stress of a Tempered Martensitic Steel. ISIJ International 52:2, pages 198-207.
Crossref
Michihiko Nagumo. (2012) Conformity between Mechanics and Microscopic Functions of Hydrogen in Failure. ISIJ International 52:2, pages 168-173.
Crossref
Michihiko Nagumo. (2011) Function of Hydrogen in Fracture Process. Materia Japan 50:5, pages 205-211.
Crossref
Koichi TakasawaYoru WadaRyoji IshigakiRinzo Kayano. (2010) Effects of Grain Size on Hydrogen Environment Embrittlement of High Strength Low Alloy Steel in 45 MPa Gaseous Hydrogen. MATERIALS TRANSACTIONS 51:2, pages 347-353.
Crossref
Koichi Takasawa, Yoru Wada, Ryoji Ishigaki & Rinzo Kayano. (2010) Effects of Grain Size on Hydrogen Environment Embrittlement of High Strength Low Alloy Steel in 45 MPa Gaseous Hydrogen. Journal of the Japan Institute of Metals 74:8, pages 520-526.
Crossref
A. Elhoud, N. Renton & W. Deans. 2009. Damage and Fracture Mechanics. Damage and Fracture Mechanics 59 67 .
K. Takai, H. Shoda, H. Suzuki & M. Nagumo. (2008) Lattice defects dominating hydrogen-related failure of metals. Acta Materialia 56:18, pages 5158-5167.
Crossref
Michihiko Nagumo. (2007) Mechanism of Hydrogen-related Failure II. Zairyo-to-Kankyo 56:9, pages 382-394.
Crossref
Michihiko Nagumo. (2007) Characteristic Features of Hydrogen-related Failure. Zairyo-to-Kankyo 56:4, pages 132-147.
Crossref
Ji Soo Kim, You Hwan Lee, Duk Lak Lee, Kyung-Tae Park & Chong Soo Lee. (2007) Effect of Intergranular Ferrite on Hydrogen Delayed Fracture Resistance of Ultrahigh Strength Boron-added Steel. ISIJ International 47:6, pages 913-919.
Crossref
Shouhua Li & Kejian Li. (2022) Microstructure Characterization and Hydrogen Embrittlement Resistance of Constructional High Strength Steel. SSRN Electronic Journal.
Crossref
Ziquan Liu, Kejian Li, Yu Si, Shouhua Li & Yuanshou Tang. (2022) Effects of Mn Addition on the Microstructure and Hydrogen Embrittlement Resistance of High Strength Martensitic Steel. SSRN Electronic Journal.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.