Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 34, 1998 - Issue 3
175
Views
28
CrossRef citations to date
0
Altmetric
NUMERICAL HEAT TRANSPER

AN INTEGRATED SPACE-TIME FINITE-VOLUME METHOD FOR MOVING-BOUNDARY PROBLEMS

, &
Pages 257-270 | Received 23 Feb 1998, Accepted 04 Apr 1998, Published online: 27 Mar 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (18)

M. Darwish, L. Mangani & F. Moukalled. (2017) General fully implicit discretization of the diffusion term for the finite volume method. Numerical Heat Transfer, Part B: Fundamentals 71:6, pages 506-532.
Read now
Jie Li, Quan Zhang & Zhi-Qiang(John) Zhai. (2017) An efficient SIMPLER-revised algorithm for incompressible flow with unstructured grids. Numerical Heat Transfer, Part B: Fundamentals 71:5, pages 425-442.
Read now
F. Moukalled, M. Darwish, J. Kasamani, A. Hammoud & M. Khamis Mansour. (2016) Buoyancy-induced flow and heat transfer in a porous annulus between concentric horizontal circular and square cylinders. Numerical Heat Transfer, Part A: Applications 69:9, pages 1029-1050.
Read now
Fadl Moukalled & Marwan Darwish. (2015) Effect of Buoyancy Ratio on Double-Diffusive Natural Convection in a Porous Rhombic Annulus. Heat Transfer Engineering 36:16, pages 1371-1386.
Read now
F. Moukalled & M. Darwish. (2013) Double Diffusive Natural Convection in a Porous Rhombic Annulus. Numerical Heat Transfer, Part A: Applications 64:5, pages 378-399.
Read now
SuhasV. Patankar. (2012) The Impact of Dr. George Raithby's Work on Numerical Heat Transfer. Numerical Heat Transfer, Part A: Applications 62:5, pages 367-371.
Read now
SuhasV. Patankar. (2012) The Impact of Dr. George Raithby's Work on Numerical Heat Transfer. Numerical Heat Transfer, Part B: Fundamentals 62:2-3, pages 89-93.
Read now
F. Moukalled & M. Darwish. (2010) Natural Convection Heat Transfer in a Porous Rhombic Annulus. Numerical Heat Transfer, Part A: Applications 58:2, pages 101-124.
Read now
F. Juretić & A. D. Gosman. (2010) Error Analysis of the Finite-Volume Method with Respect to Mesh Type. Numerical Heat Transfer, Part B: Fundamentals 57:6, pages 414-439.
Read now
Fadl Moukalled & Issam Lakkis. (2009) Natural-Convection Heat Transfer in Channels With Isoflux Convex Surfaces. Heat Transfer Engineering 30:14, pages 1151-1165.
Read now
F. Moukalled & M. Darwish. (2008) Numerical Prediction of Dispersion and Evaporation of Liquid Sprays in Gases Flowing at all Speeds. Numerical Heat Transfer, Part B: Fundamentals 54:3, pages 185-212.
Read now
I. Lakkis & F. Moukalled. (2008) Natural-Convection Heat Transfer in Channels with Isothermally Heated Convex Surfaces. Numerical Heat Transfer, Part A: Applications 53:11, pages 1176-1194.
Read now
F. Moukalled & M. Darwish. (2007) Buoyancy-Induced Heat Transfer in a Trapezoidal Enclosure with Offset Baffles. Numerical Heat Transfer, Part A: Applications 52:4, pages 337-355.
Read now
F. Moukalled & Y. Saleh. (2006) Heat and Mass Transfer in Moist Soil, Part I. Formulation and Testing. Numerical Heat Transfer, Part B: Fundamentals 49:5, pages 467-486.
Read now
F. Moukalled & M. Darwish. (2004) PRESSURE-BASED ALGORITHMS FOR MULTIFLUID FLOW AT ALL SPEEDS—PART I: MASS CONSERVATION FORMULATION. Numerical Heat Transfer, Part B: Fundamentals 45:6, pages 495-522.
Read now
F. Moukalled & M. Darwish. (2004) THE PERFORMANCE OF GEOMETRICCONSERVATION-BASED ALGORITHMS FORINCOMPRESSIBLE MULTIFLUID FLOW. Numerical Heat Transfer, Part B: Fundamentals 45:4, pages 343-368.
Read now
F. Moukalled & M. Darwish. (2002) A COMPARATIVE ASSESSMENT OF THE PERFORMANCE OF MASS CONSERVATION-BASED ALGORITHMS FOR INCOMPRESSIBLE MULTIPHASE FLOWS. Numerical Heat Transfer, Part B: Fundamentals 42:3, pages 259-283.
Read now

Articles from other publishers (10)

Christopher DeGroot. (2019) Convergence and error analysis of an automatically differentiated finite volume based heat conduction code. International Journal of Numerical Methods for Heat & Fluid Flow 29:7, pages 2389-2406.
Crossref
Fabian Denner & Berend G.M. van Wachem. (2015) TVD differencing on three-dimensional unstructured meshes with monotonicity-preserving correction of mesh skewness. Journal of Computational Physics 298, pages 466-479.
Crossref
S.-C. Xue & G.W. Barton. (2013) A finite volume formulation for transient convection and diffusion equations with unstructured distorted grids and its applications in fluid flow simulations with a collocated variable arrangement. Computer Methods in Applied Mechanics and Engineering 253, pages 146-159.
Crossref
Jean-Michel LourierMassimiliano Di DomenicoBerthold NollManfred Aigner. (2012) Implementation of an Efficient Pressure-Based CFD Solver for Accurate Thermoacoustic Computations. Implementation of an Efficient Pressure-Based CFD Solver for Accurate Thermoacoustic Computations.
A. Naderi, M. Darbandi & M. Taeibi‐Rahni. (2009) Developing a unified FVE‐ALE approach to solve unsteady fluid flow with moving boundaries. International Journal for Numerical Methods in Fluids 63:1, pages 40-68.
Crossref
Chin‐Hsiang Cheng & Kuo‐Shu Hung. (2006) Numerical predictions of flow and thermal fields in an enclosure with two periodically moving walls. International Journal for Numerical Methods in Fluids 53:3, pages 353-369.
Crossref
F.E. Ham, F.S. Lien & A.B. Strong. (2002) A Cartesian Grid Method with Transient Anisotropic Adaptation. Journal of Computational Physics 179:2, pages 469-494.
Crossref
R.J Goldstein, E.R.G Eckert, W.E Ibele, S.V Patankar, T.W Simon, T.H Kuehn, P.J Strykowski, K.K Tamma, A Bar-Cohen, J.V.R Heberlein, J.H Davidson, J Bischof, F.A Kulacki, U Kortshagen & S Garrick. (2001) Heat transfer: a review of 1998 literature. International Journal of Heat and Mass Transfer 44:2, pages 253-366.
Crossref
F. Moukalled & M. Darwish. (2001) A High-Resolution Pressure-Based Algorithm for Fluid Flow at All Speeds. Journal of Computational Physics 168:1, pages 101-130.
Crossref
P.J Zwart, G.D Raithby & M.J Raw. (1999) The Integrated Space-Time Finite Volume Method and Its Application to Moving Boundary Problems. Journal of Computational Physics 154:2, pages 497-519.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.