1,279
Views
45
CrossRef citations to date
0
Altmetric
Review Article

Nanomaterials-Based Nanosensors for the Simultaneous Electrochemical Determination of Biologically Important Compounds: Ascorbic Acid, Uric Acid, and Dopamine

ORCID Icon, ORCID Icon & ORCID Icon
Pages 101-125 | Published online: 21 Dec 2018

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (2)

Masoumeh Ghalkhani, Sariye Irem Kaya, Nurgul K. Bakirhan, Yalcin Ozkan & Sibel A. Ozkan. (2022) Application of Nanomaterials in Development of Electrochemical Sensors and Drug Delivery Systems for Anticancer Drugs and Cancer Biomarkers. Critical Reviews in Analytical Chemistry 52:3, pages 481-503.
Read now
Masoumeh Ghalkhani, Nurgul K. Bakirhan & Sibel A. Ozkan. (2020) Combination of Efficiency with Easiness, Speed, and Cheapness in Development of Sensitive Electrochemical Sensors. Critical Reviews in Analytical Chemistry 50:6, pages 538-553.
Read now

Articles from other publishers (43)

Grace Burns, Md Younus Ali & Matiar M.R. Howlader. (2023) Advanced functional materials for electrochemical dopamine sensors. TrAC Trends in Analytical Chemistry 169, pages 117367.
Crossref
Reyhaneh Aziziyan, Homeira Ebrahimzadeh & Fatemeh Nejabati. (2023) Simultaneous determination of trace amounts of dopamine and uric acid in human plasma samples with novel voltammetric biosensor (GCE/Ppy/DEA MIP) following the thin film-µSPE method based on electrospun nanofibers. Microchemical Journal 194, pages 109235.
Crossref
Xiaoyun Zhou, Yiwen Kuang, Jian Li, Shiyu Hu, Cong Cheng, Jiaqi Wang, Xiaoli Qin, Lihui Ou & Zhaohong Su. (2023) Melamine-Based Nanocomposites for Selective Dopamine and Uric Acid Sensing. ACS Applied Polymer Materials 5:7, pages 5609-5619.
Crossref
Long Cheng, Paerhatijiang Tuersun, Dengpan Ma, Dilishati Wumaier & Yixuan Li. (2023) Inversion of the Complex Refractive Index of Au-Ag Alloy Nanospheres Based on the Contour Intersection Method. Materials 16:9, pages 3291.
Crossref
Selenay Sadak, Iclal Atay, Sevinc Kurbanoglu & Bengi Uslu. 2023. Recent Developments in Green Electrochemical Sensors: Design, Performance, and Applications. Recent Developments in Green Electrochemical Sensors: Design, Performance, and Applications 157 191 .
Manika Chaudhary, Ashwani Kumar, Arti Devi, Beer Pal Singh, Bansi D. Malhotra, Kushagr Singhal, Sangeeta Shukla, Srikanth Ponnada, Rakesh K. Sharma, Carmen A. Vega-Olivencia, Shrestha Tyagi & Rahul Singhal. (2023) Prospects of nanostructure-based electrochemical sensors for drug detection: a review. Materials Advances 4:2, pages 432-457.
Crossref
Yifan Da, Shihua Luo & Yang Tian. (2022) Real-Time Monitoring of Neurotransmitters in the Brain of Living Animals. ACS Applied Materials & Interfaces 15:1, pages 138-157.
Crossref
程龙 Cheng Long, 帕尔哈提江·吐尔孙 Tuersun Paerhatijiang, 马登攀 Ma Dengpan, 郑玉霞 Zheng Yuxia & 热米莱·阿卜来提 Abulaiti Remilai. (2023) 基于等高线相交法的Au纳米球复折射率反演研究. Laser & Optoelectronics Progress 60:21, pages 2116003.
Crossref
Zhou Feng, H. N. Lim, I. Ibrahim & N. S. K. Gowthaman. (2023) A review of zeolitic imidazolate frameworks (ZIFs) as electrochemical sensors for important small biomolecules in human body fluids. Journal of Materials Chemistry B.
Crossref
Arruje Hameed, Muhammad Jawwad Saif, Muhammad Abdul Qayyum, Tanzila Khalid & Tahir Farooq. 2023. Engineered Nanomaterials for Sustainable Agricultural Production, Soil Improvement and Stress Management. Engineered Nanomaterials for Sustainable Agricultural Production, Soil Improvement and Stress Management 357 385 .
Bo Wu, Minzhang Li, Rajendran Ramachandran, Gaoqiang Niu, Mingxiang Zhang, Changhui Zhao, Zongxiang Xu & Fei Wang. (2022) GQDs Incorporated CoPc Nanorods for Electrochemical Detection of Dopamine and Uric Acid. Advanced Materials Interfaces 10:1.
Crossref
Sadık ÇOĞAL. (2022) Dopamin ve Ürik Asit Tayini İçin 2-Boyutlu MoSe2 Bazlı Elektrokimyasal Sensör GeliştirilmesiDevelopment of MoSe2-based Electrochemical Sensor for Detection of Dopamine and Uric Acid. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26:3, pages 329-334.
Crossref
Protity Saha, Riva Akter, Syed Shaheen Shah, Wael Mahfoz, Md. Abdul Aziz & A. J. Saleh Ahammad. (2022) Gold Nanomaterials and their Composites as Electrochemical Sensing Platforms for Nitrite Detection. Chemistry – An Asian Journal 17:20.
Crossref
Chetna Kagathara, Komal Odedra & Nasir Vadia. (2022) Development of HPTLC method for the simultaneous estimation of quercetin, curcumin, and ascorbic acid in herbal formulations. Journal of the Iranian Chemical Society 19:10, pages 4129-4138.
Crossref
Wang Qiao, Yiran Wang, Zhenxia Zhao, Yujiao Wang, Kui Chen, Zhongxing Zhao & Min Li. (2022) A novel SERS substrate of MIL-100(Fe)/AgNFs for sensitive detection of ascorbic acid in cellular media. RSC Advances 12:37, pages 24101-24106.
Crossref
Wojciech Mazurkiewicz, Artur Małolepszy & Emilia Witkowska Nery. (2022) Comparison of Carbon Nanomaterials for Simultaneous Detection of Neurotransmitters in the Presence of Interfering Species. ChemElectroChem 9:15.
Crossref
Ahmet Karatay, Sevinc Kurbanoglu, Gokhan Sevinc, Elif Akhuseyin Yildiz, Mustafa Hayvali, Sibel A. Ozkan & Ayhan Elmali. (2022) Understanding electrooxidation mechanism of anticancer drugs utilizing ultrafast pump probe spectroscopy. Journal of Molecular Structure 1262, pages 133071.
Crossref
Haoran Wang, Tongtong Cao, Yicheng Zhou, Lin Liu, Xiaobo Zhang & Zhiwei Tong. (2022) A facile approach to synthesis methylene blue/reduced graphene oxide nanocomposite and simultaneous determination of dopamine and uric acid. Journal of Applied Electrochemistry 52:7, pages 1067-1080.
Crossref
Cynthia P. McCordBali SummersCharles S. Henry. (2022) Simultaneous Analysis of Ascorbic Acid, Uric Acid, and Dopamine at Bare Polystyrene Thermoplastic Electrodes. ChemElectroChem 9:11.
Crossref
Diganta Kumar Das & Priyakshi Bordoloi. (2022) Acid Modified Graphene Oxide from used Battery Rods Loaded with 2-{(E)-[(3-hydroxyphenyl) imino] methyl} phenol: Electrochemical Detection of Dopamine in Presence of Ascorbic Acid and Uric Acid in Aqueous Medium. Journal of Surface Science and Technology.
Crossref
Fatih Pekdemir, İzzet Koçak & Abdurrahman Şengül. (2022) Copper(II) and Cobalt(II) Tridentate Complexes on Modified Graphene Oxide as Electrochemical Biosensors for Simultaneously Detecting Biomolecules. Electrocatalysis 13:2, pages 126-138.
Crossref
Yuxia Zheng, Paerhatijiang Tuersun, Remilai Abulaiti, Dengpan Ma & Long Cheng. (2022) Retrieval of Size Distribution and Concentration of Au-Ag Alloy Nanospheroids by Spectral Extinction Method. Materials 15:5, pages 1778.
Crossref
S. Irem Kaya, Ahmet Cetinkaya & Sibel A. Ozkan. (2022) Carbon Nanomaterial-Based Drug Sensing Platforms Using State-of-the- Art Electroanalytical Techniques. Current Analytical Chemistry 18:1, pages 79-101.
Crossref
Ya You, Jiao Zou, Wen-Jie Li, Jun Chen, Xin-Yu Jiang & Jin-Gang Yu. (2022) Novel lanthanum vanadate-based nanocomposite for simultaneously electrochemical detection of dopamine and uric acid in fetal bovine serum. International Journal of Biological Macromolecules 195, pages 346-355.
Crossref
Junqiang Pan, Mei Liu, Dandan Li, Haonan Zheng & Dongdong Zhang. (2021) Overoxidized poly(3,4-ethylenedioxythiophene)–gold nanoparticles–graphene-modified electrode for the simultaneous detection of dopamine and uric acid in the presence of ascorbic acid. Journal of Pharmaceutical Analysis 11:6, pages 699-708.
Crossref
Santa Islam, Syed Shaheen Shah, Shamsun Naher, Muhammad Ali Ehsan, Md. Abdul Aziz & A. J. Saleh Ahammad. (2021) Graphene and Carbon Nanotube‐based Electrochemical Sensing Platforms for Dopamine. Chemistry – An Asian Journal 16:22, pages 3516-3543.
Crossref
S. Irem Kaya, Ahmet Cetinkaya & Sibel A. Ozkan. (2021) Latest advances on the nanomaterials-based electrochemical analysis of azo toxic dyes Sunset Yellow and Tartrazine in food samples. Food and Chemical Toxicology 156, pages 112524.
Crossref
Xiushuang Fan, Jinpeng Qiu, Chao Peng, Jiangtao Ren, Huanhuan Xing, Chuyao Bi, Jianyuan Yin & Jing Li. (2021) Catalytical feature of optical nanoprobes of boron nitride quantum dots in the presence of Cu 2+ for the determination of dopamine . The Analyst 146:18, pages 5668-5674.
Crossref
Yijin Shu, Zhaojie Li, Yang Yang, Jingwen Tan, Zhiyin Liu, Yanghao Shi, Chengxi Ye & Qingsheng Gao. (2021) Isolated Cobalt Atoms on N-Doped Carbon as Nanozymes for Hydrogen Peroxide and Dopamine Detection. ACS Applied Nano Materials 4:8, pages 7954-7962.
Crossref
Maria A. Bukharinova, Natalia Yu. Stozhko, Elizaveta A. Novakovskaya, Ekaterina I. Khamzina, Aleksey V. Tarasov & Sergey V. Sokolkov. (2021) Developing Activated Carbon Veil Electrode for Sensing Salivary Uric Acid. Biosensors 11:8, pages 287.
Crossref
Francesca Mazzara, Bernardo Patella, Giuseppe Aiello, Alan O'Riordan, Claudia Torino, Antonio Vilasi & Rosalinda Inguanta. (2021) Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors. Electrochimica Acta 388, pages 138652.
Crossref
Sima Kalhor, Mahmoud Zarei, Hassan Sepehrmansourie, Mohammad Ali Zolfigol, Hu Shi, Jinping Wang, Jalal Arjomandi, Masoumeh Hasani & Romana Schirhagl. (2021) Novel uric acid-based nano organocatalyst with phosphorous acid tags: Application for synthesis of new biologically-interest pyridines with indole moieties via a cooperative vinylogous anomeric based oxidation. Molecular Catalysis 507, pages 111549.
Crossref
S. M. Abu Nayem, Syed Shaheen Shah, Nasrin Sultana, Md. Abdul Aziz & A. J. Saleh Ahammad. (2021) Electrochemical Sensing Platforms of Dihydroxybenzene: Part 1 – Carbon Nanotubes, Graphene, and their Derivatives. The Chemical Record 21:5, pages 1039-1072.
Crossref
S. Đurđić, V. Stanković, F. Vlahović, M. Ognjanović, K. Kalcher, T. Ćirković Veličković, J. Mutić & D. M. Stanković. (2021) Laccase Polyphenolic Biosensor Supported on MnO 2 @GNP Decorated SPCE: Preparation, Characterization, and Analytical Application . Journal of The Electrochemical Society 168:3, pages 037510.
Crossref
Tooba Hallaj, Neda Azizi & Mohammad Amjadi. (2021) A dual-mode colorimetric and fluorometric nanosensor for detection of uric acid based on N, P co-doped carbon dots and in-situ formation of Au/Ag core-shell nanoparticles. Microchemical Journal 162, pages 105865.
Crossref
Yong-Yu Li, Ping Kang, Shi-Qi Wang, Zhang-Gang Liu, Yi-Xiang Li & Zheng Guo. (2021) Ag nanoparticles anchored onto porous CuO nanobelts for the ultrasensitive electrochemical detection of dopamine in human serum. Sensors and Actuators B: Chemical 327, pages 128878.
Crossref
Nurgul K. Bakirhan, Sariye Irem Kaya & Sibel A Ozkan. 2021. Electroanalytical Applications of Quantum Dot-Based Biosensors. Electroanalytical Applications of Quantum Dot-Based Biosensors 37 80 .
Magda El Henawee, Hanaa Saleh, Emad Mohamed Hussien & Abeer Rashad Derar. (2020) Green Adsorptive Stripping Electrochemical Methods for Determination of Vortioxetine Hydrobromide at Graphite Pencil Electrode. IEEE Sensors Journal 20:19, pages 11090-11096.
Crossref
Jayanta S. Boruah & Devasish Chowdhury. (2020) Palmitic acid–carbon dot hybrid vesicles for absorption of uric acid. Applied Nanoscience 10:7, pages 2207-2218.
Crossref
Andrés Arroquia, Irene Acosta & M. Pilar García Armada. (2020) Self-assembled gold decorated polydopamine nanospheres as electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. Materials Science and Engineering: C 109, pages 110602.
Crossref
Buse Demirkan, Sait Bozkurt, Kemal Cellat, Kubilay Arıkan, Mustafa Yılmaz, Aysun Şavk, Mehmet Harbi Çalımlı, Mehmet Salih Nas, Mehmet Nuri Atalar, Mehmet Hakkı Alma & Fatih Sen. (2020) Palladium supported on polypyrrole/reduced graphene oxide nanoparticles for simultaneous biosensing application of ascorbic acid, dopamine, and uric acid. Scientific Reports 10:1.
Crossref
Maria Coroş, Stela Pruneanu & Raluca-Ioana Stefan-van Staden. (2019) Review—Recent Progress in the Graphene-Based Electrochemical Sensors and Biosensors. Journal of The Electrochemical Society 167:3, pages 037528.
Crossref
Aylin Dedeoglu, Sariye Irem Kaya, Nurgul K. Bakirhan & Sibel A. Ozkan. 2020. Commercial Biosensors and Their Applications. Commercial Biosensors and Their Applications 301 353 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.