1,279
Views
45
CrossRef citations to date
0
Altmetric
Review Article

Nanomaterials-Based Nanosensors for the Simultaneous Electrochemical Determination of Biologically Important Compounds: Ascorbic Acid, Uric Acid, and Dopamine

ORCID Icon, ORCID Icon & ORCID Icon
Pages 101-125 | Published online: 21 Dec 2018

References

  • Taleb, M.; Ivanov, R.; Bereznev, S.; Kazemi, S. H.; Hussainova, I. Ultra-Sensitive Voltammetric Simultaneous Determination of Dopamine, Uric Acid and Ascorbic Acid Based on a Graphene-Coated Alumina Electrode. Microchim. Acta 2017, 184, 4603–4610. DOI:10.1007/s00604-017-2510-y.
  • Kayaalp, O. S. Akılcı Tedavi Yönünden Tıbbi Farmakoloji, 2012.
  • Kumar, A. N.; Aruna, P.; Naidu, J. N.; Kumar, R.; Srivastava, A. K. Review of Concepts and Controversies of Uric Acid as Antioxidant and Pro-Oxidant. Arch. Med. Rev. J. 2015, 24, 19–40. DOI:10.17827/aktd.53469.
  • Lippincott Illustrated Reviews: Pharmacology, Sixth; Whalen, K., Finkel, R., Panavelil, T. A., Eds.; Wolters Kluwer: Philadelphia, 2015. DOI:10.1017/CBO9781107415324.004.
  • Guo, Z.; Luo, X.; Li, Y.; Li, D.; Zhao, Q.; Li, M.; Ma, C.; Zhao, Y. Simultaneous Electrochemical Determination of Ascorbic Acid, Dopamine and Uric Acid Based on Reduced Graphene Oxide-Ag/PANI Modified Glassy Carbon Electrode. Chem. Res. Chin. Univ. 2017, 33, 507–512. DOI:10.1007/s40242-017-6473-7.
  • Aydoğdu Tığ, G.; Günendi, G.; Pekyardımcı, Ş. A Selective Sensor Based on Au Nanoparticles-Graphene Oxide-Poly(2,6-Pyridinedicarboxylic Acid) Composite for Simultaneous Electrochemical Determination of Ascorbic Acid, Dopamine, and Uric Acid. J. Appl. Electrochem. 2017, 47, 607–618. DOI:10.1007/s10800-017-1060-7.
  • Ozkan, S. A.; Kauffmann, J.-M.; Zuman, P. Electroanalysis in Biomedical and Pharmaceutical Sciences. Switzerland AG: Springer, 2015. DOI:10.1007/978-3-662-47138-8.
  • Harvey, D. Modern Analytical Chemistry, Anal. Chem. 1962, 34, 7, 23A–33A. DOI:10.1021/ac60187a708.
  • Özkan, S. A.; Uslu, B.; Aboul-Enein, H. Y. Analysis of Pharmaceuticals and Biological Fluids Using Modern Electroanalytical Techniques. Crit. Rev. Anal. Chem. New York: VCH Publishers, 2003, 33, 155–181. DOI:10.1080/713609162.
  • Gosser, D. K. Cyclic Voltammetry; VCH, 1994.
  • Compton, R. G.; Banks, C. E. Understanding Voltammetry; 2010. DOI:10.1142/p726.
  • Inesi, A. Instrumental Methods in Electrochemistry. Bioelectrochem. Bioenerg. 1986, 15, 531. DOI:10.1016/0302-4598(86)85047-4.
  • Greef, R.; Peat, R.; Peter, L. M.; Pletcher, D. Instrumental Methods in Electrochemistry. Ellis Horwood: Chichester, 1990
  • Wang, J. Nanomaterial-Based Electrochemical Biosensors. Analyst 2005, 130, 421–426. DOI:10.1039/b414248a.
  • Pandey, P.; Datta, M.; Malhotra, B. D. Prospects of Nanomaterials in Biosensors. Anal. Lett. 2008, 41, 159–209. DOI:10.1080/00032710701792620.
  • Kurbanoglu, S.; Ozkan, S. A. Electrochemical Carbon Based Nanosensors: A Promising Tool in Pharmaceutical and Biomedical Analysis. J. Pharm. Biomed. Anal. 2017, 147, 439–457. DOI:10.1016/j.jpba.2017.06.062.
  • Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Anal. Chem. 2015, 87, 230–249. DOI:10.1021/ac5039863.
  • Stefan-van Staden, R.-I.; Moldoveanu, I.; van Staden, J. F. Pattern Recognition of Neurotransmitters Using Multimode Sensing. J. Neurosci. Methods 2014, 229, 1–7. DOI:10.1016/J.JNEUMETH.2014.03.008.
  • Palacek, E.; Scheller, F.; Wang, J. Electrochemistry of Nucleic Acids and Proteins: Towards Electrochemical Sensors for Genomics and Proteomics; New York: Elsevier Science, 2005.
  • Vire, J. C.; Kauffmann, J.-M. Trends in Electrochemistry in Drug Analysis. Curr. Top. Electrochem. 1994, 3, 493–498.
  • Brown, E. R.; Large, R. F.; Weissberg, A.; Rossiter, B. W. Physical Methods of Chemistry. United States: Wiley Interscience, 1964.
  • Ozkan, S. A. Electroanalytical Methods in Pharmaceutical Analysis and Their Validation, 1st ed.; 13 Page#:Item: Line 2155: HNB Pub., 2012.
  • Zhang, X.; Ju, H.; Wang, J. Electrochemical Sensors, Biosensors and Their Biomedical Applications; New York: Elsevier, 2008.
  • Brett, C. M. A. Electrochemistry. Principles, Methods and Applications; Oxford University Press: Oxford, 1993.
  • Hart, J. P. Electroanalysis of Biologically Important Compounds; Ellis Horwood: Chichester, 1990.
  • Wang, J. Analytical Electrochemistry. 3rd ed.; United States: John Wiley, 2006, DOI:10.1002/0471790303.
  • Scholz, F.; Stojek, Z.; Inzelt, G.; Marken, F.; Neudeck, A.; Bond, A. M.; Lovric, M.; Retter, U.; Lohse, H.; Compton, R. G.; et al. Electroanalytical Methods: Guide to Experiments and Applications, 2nd ed.; Scholz, F., Ed.; Springer: Berlin, 2010. DOI:10.1007/978-3-642-02915-8.
  • Girault, H. H. Analytical and Physical Electrochemistry, 1st ed.; Lausanne, Switzerland: EPFL Press, 2005. DOI:10.1016/j.trac.2005.07.002.
  • Kurbanoglu, S.; Uslu, B.; Ozkan, S. A. Nanostructures for Oral Medicine; Andronescu, E., Grumezescu, A. M., Eds.; New York: Elsevier, 2017.
  • Kumar, N.; Kumbhat, S. Essentials in Nanoscience and Nanotechnology. United States: John Wiley, 2016, 8. DOI:10.1007/s11920-006-0082-3.
  • Chen, A.; Chatterjee, S. Nanomaterials Based Electrochemical Sensors for Biomedical Applications. Chem. Soc. Rev. 2013, 42, 5425. DOI:10.1039/c3cs35518g.
  • Akhgari, F.; Fattahi, H.; Oskoei, Y. M. Recent Advances in Nanomaterial-Based Sensors for Detection of Trace Nitroaromatic Explosives. Sens. Actuators B Chem. 2015, 221, 867–878. DOI:10.1016/j.snb.2015.06.146.
  • Gogotsi, Y. Carbon Nanomaterials; Boca Raton: CRC Press, 2006. DOI:10.1201/9781420009378.
  • Scida, K.; Stege, P. W.; Haby, G.; Messina, G. A.; García, C. D. Recent Applications of Carbon-Based Nanomaterials in Analytical Chemistry: Critical Review. Anal. Chim. Acta 2011, 691, 6–17. DOI:10.1016/j.aca.2011.02.025.
  • Zhang, B. T.; Zheng, X.; Li, H. F.; Lin, J. M. Application of Carbon-Based Nanomaterials in Sample Preparation: A Review. Anal. Chim. Acta 2013, 784, 1–17. DOI:10.1016/j.aca.2013.03.054.
  • Cha, C.; Shin, S. R.; Annabi, N.; Dokmeci, M. R.; Khademhosseini, A. Carbon-Based Nanomaterials: Multifunctional Materials for Biomedical Engineering. ACS Nano 2013, 7, 2891–2897. DOI:10.1021/nn401196a.
  • Carbon-Based Nanomaterials and Hybrids; Fecht, H., Brühne, K., Gluche, P., Eds.; Singapore: Taylor & Francis Group, Pan Stanford. 2014. DOI:10.1201/b15673.
  • Siqueira, J. R.; Oliveira, O. N. Carbon-Based Nanomaterials. In Nanostructures; New York: Elsevier, 2017; pp 233–249. DOI:10.1016/B978-0-323-49782-4.00009-7.
  • Gautam, V.; Singh, K. P.; Yadav, V. L. Preparation and Characterization of Green-Nano-Composite Material Based on Polyaniline, Multiwalled Carbon Nano Tubes and Carboxymethyl Cellulose: For Electrochemical Sensor Applications. Carbohydr. Polym. 2018, 189, 218–228. DOI:10.1016/J.CARBPOL.2018.02.029.
  • Gautam, V.; Singh, K. P.; Yadav, V. L. Polyaniline/MWCNTs/Starch Modified Carbon Paste Electrode for Non-Enzymatic Detection of Cholesterol: Application to Real Sample (Cow Milk). Anal. Bioanal. Chem. 2018, 410, 2173–2181. DOI:10.1007/s00216-018-0880-6.
  • Jafari, H.; Ganjali, M. R.; Dezfuli, A. S.; Faridbod, F. Long Term Determination of Dopamine and Uric Acid in the Presence of Ascorbic Acid Using Ytterbia/Reduced Graphene Oxide Nanocomposite Prepared through a Sonochemical Route. Appl. Surf. Sci. 2018, 427, 496–506. DOI:10.1016/J.APSUSC.2017.08.054.
  • Jadon, N.; Jain, R.; Sharma, S.; Singh, K. Recent Trends in Electrochemical Sensors for Multianalyte Detection – a Review. Talanta 2016, 161, 894–916. DOI:10.1016/j.talanta.2016.08.084.
  • Yang, C.; Denno, M. E.; Pyakurel, P.; Venton, B. J. Recent Trends in Carbon Nanomaterial-Based Electrochemical Sensors for Biomolecules: A Review. Anal. Chim. Acta 2015, 887, 17–37. DOI:10.1016/j.aca.2015.05.049.
  • Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109. DOI:10.1103/RevModPhys.81.
  • Geim, A. K. Graphene : Status and Prospects. Science 2009, 324, 1530–1535. DOI:10.1126/science.1158877.
  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nature Mater. 2007, 6, 183–191. DOI:10.1038/nmat1849.
  • Dang, X.; Hu, H.; Wang, S.; Hu, S. Nanomaterials-Based Electrochemical Sensors for Nitric Oxide. Microchim. Acta 2015, 182, 455–467. DOI:10.1007/s00604-014-1325-3.
  • Rao, C. N. R.; Seshadri, R.; Govindaraj, A.; Sen, R. Fullerenes, Nanotubes, Onions and Related Carbon Structures. Mater. Sci. Eng. 1995, 15, 209–262. DOI:10.1016/S0927-796X(95)00181-6.
  • Conyers, J. L.; Partha, R. Biomedical Applications of Functionalized Fullerene-Based Nanomaterials. Int J Nanomedicine. 2009, 4, 261–275.
  • Laurila, T.; Sainio, S.; Caro, M. Hybrid Carbon Based Nanomaterials for Electrochemical Detection of Biomolecules. Prog. Mater. Sci. 2017, 88, 499–594. DOI:10.1016/j.pmatsci.2017.04.012.
  • Terrones, M.; Ajayan, P. M.; Banhart, F.; Blase, X.; Carroll, D. L.; Charlier, J. C.; Czerw, R.; Foley, B.; Grobert, N.; Kamalakaran, R.; et al. N-Doping and Coalescence of Carbon Nanotubes: Synthesis and Electronic Properties. Appl. Phys. A 2002, 74, 355–361. DOI:10.1007/s003390201278.
  • Jiang, K.; Eitan, A.; Schadler, L. S.; Ajayan, P. M.; Siegel, R. W.; Grobert, N.; Mayne, M.; Reyes-Reyes, M.; Terrones, H.; Terrones, M. Selective Attachment of Gold Nanoparticles to Nitrogen-Doped Carbon Nanotubes. Nano Lett. 2003, 3, 275–277. DOI:10.1021/nl025914t.
  • Wang, M.; Hsieh, A. J.; Rutledge, G. C. Electrospinning of Poly(MMA-Co-MAA) Copolymers and Their Layered Silicate Nanocomposites for Improved Thermal Properties. Polymer (Guildf) 2005, 46, 3407–3418. DOI:10.1016/j.polymer.2005.02.099.
  • Poh, H. L.; Pumera, M. Nanoporous Carbon Materials for Electrochemical Sensing. Chem. Chem. Asian J. 2012, 7, 412–416. DOI:10.1002/asia.201100681.
  • Lee, J.; Han, S.; Hyeon, T. Synthesis of New Nanoporous Carbon Materials Using Nanostructured Silica Materials as Templates. J. Mater. Chem. 2004, 14, 478. DOI:10.1039/b311541k.
  • Huang, J.; Liu, Y.; You, T. Carbon Nanofiber Based Electrochemical Biosensors: A Review. Anal. Methods 2010, 2, 202. DOI:10.1039/b9ay00312f.
  • Gogotsi, Y. Nanotubes & Nanofibers; 2006.
  • Terzyk, A. P.; Gauden, P. A.; Furmaniak, S.; Werengoxska-Ciecwiers, K.; Kowalczyk, P.; Wisniewski, M. Carbon Nanohorns. In Carbon Nanomaterials Sourcebook; Taylor & Francis Group, Pan Stanford. 2012, pp 75–114.
  • Zhu, S.; Xu, G. Single-Walled Carbon Nanohorns and Their Applications. Nanoscale 2010, 2, 2538. DOI:10.1039/c0nr00387e.
  • Fernández-Garcia, M. J. A. Rodriguez. Metal Oxide Nanoparticles. Nanomater. Inorg. Bioinorg. Perspect.; United States: John Wiley, 2007. DOI:10.1002/0470862106.ia377.
  • Viswanathan, S.; Manisankar, P. Nanomaterials for Electrochemical Sensing and Decontamination of Pesticides; Pumera, M., Ed.; USA: American Scientific Publishers. 2015; Vol. 15. DOI:10.1166/jnn.2015.10724.
  • Oskam, G. Metal Oxide Nanoparticles: Synthesis, Characterization and Application. J. Sol Gel Sci. Technol. 2006, 37, 161–164. DOI:10.1007/s10971-005-6621-2.
  • Sheng, Z.-H.; Zheng, X.-Q.; Xu, J.-Y.; Bao, W.-J.; Wang, F.-B.; Xia, X.-H. Electrochemical Sensor Based on Nitrogen Doped Graphene: Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Biosens. Bioelectron. 2012, 34, 125–131. DOI:10.1016/j.bios.2012.01.030.
  • Sajid, M.; Nazal, M. K.; Mansha, M.; Alsharaa, A.; Muhammad, S.; Jillani, S.; Basheer, C. Chemically Modified Electrodes for Electrochemical Detection of Dopamine in Presence of Uric Acid and Ascorbic Acid: A Review. Elsevier B.V. 2016, 76, 15. Vol. DOI:10.1016/j.trac.2015.09.006.
  • Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J.; Edwards, P. P. Metal Nanoparticles and Their Assemblies. Chem. Soc. Rev. 2000, 29, 27–35. DOI:10.1039/a904518j.
  • Luo, X.; Morrin, A.; Killard, A. J.; Smyth, M. R. Application of Nanoparticles in Electrochemical Sensors and Biosensors. Electroanalysis 2006, 18, 319–326. DOI:10.1002/elan.200503415.
  • Fedlheim, D. L.; Foss, C. A. Metal Nanoparticles: Synthesis, Characterization, and Applications; CRC Press, 2001.
  • Yang, C.; Denno, M. E.; Pyakurel, P.; Venton, B. J. Recent Trends in Carbon Nanomaterial-Based Electrochemical Sensors for Biomolecules: A Review. Analytica chimica acta, 2016, 887, 17–37. DOI:10.1016/j.aca.2015.05.049.Recent.
  • Schadler, L. S. Polymer-Based and Polymer-Filled Nanocomposites. Nanocompos. Sci. Technol. 2003, 77–153. DOI:10.1002/3527602127.ch2.
  • Marín, S.; Merkoçi, A. Nanomaterials Based Electrochemical Sensing Applications for Safety and Security. Electroanalysis 2012, 24, 459–469. DOI:10.1002/elan.201100576.
  • Yao, J.; Li, L.; Li, P.; Yang, M. Quantum Dots: From Fluorescence to Chemiluminescence, Bioluminescence, Electrochemiluminescence, and Electrochemistry. Nanoscale 2017, 9, 13364–13383. DOI:10.1039/C7NR05233B.
  • Huang, H.; Zhu, J.-J. The Electrochemical Applications of Quantum Dots. Analyst 2013, 138, 5855–5865. DOI:10.1039/c3an01034a.
  • Rowland, C. E.; Brown, C. W.; Delehanty, J. B.; Medintz, I. L. Nanomaterial-Based Sensors for the Detection of Biological Threat Agents. Mater. Today 2016, 19, 464–477. DOI:10.1016/j.mattod.2016.02.018.
  • Bimberg, D.; Grundmann, M.; Ledentsov, N. N. Quantum Dot Heterostructures; USA: John Wiley & Sons, 1999.
  • Wang, Z. L. Nanowires and Nanobelts: Materials, Properties and Devices. In Nanowires and Nanobelts of Functional Materials; Boston: Springer, 2003; Vol. 2. DOI:10.1007/978-0-387-28747-8_7.
  • Chiappini, C. Nanoneedle-Based Sensing in Biological Systems. ACS Sens. 2017, 2, 1086–1102. DOI:10.1021/acssensors.7b00350.
  • Yum, K.; Wang, N.; Yu, M.-F. Nanoneedle: A Multifunctional Tool for Biological Studies in Living Cells. Nanoscale 2010, 2, 363–372. DOI:10.1039/b9nr00231f.
  • An, T.; Choi, W.; Lee, E.; Kim, I.-T.; Moon, W.; Lim, G. Fabrication of Functional Micro- and Nanoneedle Electrodes Using a Carbon Nanotube Template and Electrodeposition. Nanoscale Res. Lett. 2011, 6, 306. DOI:10.1186/1556-276X-6-306.
  • Alagiri, M.; Rameshkumar, P.; Pandikumar, A. Gold Nanorod-Based Electrochemical Sensing of Small Biomolecules: A Review. Microchim. Acta 2017, 184, 3069–3092. DOI:10.1007/s00604-017-2418-6.
  • Yu, Chang, S.-S.; Lee, C.-L.; Wang, C. R. C. Gold Nanorods: Electrochemical Synthesis and Optical Properties. J. Phys. Chem. B 1997, 101, 6661–6664. DOI:10.1021/jp971656q.
  • Huang, X.; Neretina, S.; El-Sayed, M. A. Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications. Adv. Mater. 2009, 21, 4880–4910. DOI:10.1002/adma.200802789.
  • Salimi, A.; MamKhezri, H.; Hallaj, R. Simultaneous Determination of Ascorbic Acid, Uric Acid and Neurotransmitters with a Carbon Ceramic Electrode Prepared by Sol–Gel Technique. Talanta 2006, 70, 823–832. DOI:10.1016/J.TALANTA.2006.02.015.
  • Ma, Y.; Yang, C.; Li, N.; Yang, X. A Sensitive Method for the Detection of Catecholamine Based on Fluorescence Quenching of CdSe Nanocrystals. Talanta 2005, 67, 979–983. DOI:10.1016/J.TALANTA.2005.04.027.
  • Shervedani, R. K.; Bagherzadeh, M.; Mozaffari, S. A. Determination of Dopamine in the Presence of High Concentration of Ascorbic Acid by Using Gold Cysteamine Self-Assembled Monolayers as a Nanosensor. Sens. Actuators B Chem. 2006, 115, 614–621. DOI:10.1016/J.SNB.2005.10.027.
  • Zhao, S.; Wang, J.; Ye, F.; Liu, Y.-M. Determination of Uric Acid in Human Urine and Serum by Capillary Electrophoresis with Chemiluminescence Detection. Anal. Biochem. 2008, 378, 127–131. DOI:10.1016/J.AB.2008.04.014.
  • Yang, L.; Huang, N.; Lu, Q.; Liu, M.; Li, H.; Zhang, Y.; Yao, S. A Quadruplet Electrochemical Platform for Ultrasensitive and Simultaneous Detection of Ascorbic Acid, Dopamine, Uric Acid and Acetaminophen Based on a Ferrocene Derivative Functional Au NPs/Carbon Dots Nanocomposite and Graphene. Anal. Chim. Acta 2016, 903, 69–80. DOI:10.1016/J.ACA.2015.11.021.
  • Atta, N. F.; El-Kady, M. F.; Galal, A. Simultaneous Determination of Catecholamines, Uric Acid and Ascorbic Acid at Physiological Levels Using Poly(N-Methylpyrrole)/Pd-Nanoclusters Sensor. Anal. Biochem. 2010, 400, 78–88, DOI:10.1016/j.ab.2010.01.001.
  • Kalimuthu, P.; John, S. A. Simultaneous Determination of Ascorbic Acid, Dopamine, Uric Acid and Xanthine Using a Nanostructured Polymer Film Modified Electrode. Talanta 2010, 80, 1686–1691. DOI:10.1016/J.TALANTA.2009.10.007.
  • Ma, X.; Chao, M.; Wang, Z. Electrochemical Detection of Dopamine in the Presence of Epinephrine, Uric Acid and Ascorbic Acid Using a Graphene-Modified Electrode. Anal. Methods 2012, 4, 1687. DOI:10.1039/c2ay25040c.
  • Guo, Z.; Dong, S. Electrogenerated Chemiluminescence Determination of Dopamine and Epinephrine in the Presence of Ascorbic Acid at Carbon Nanotube/Nafion-Ru(Bpy) Composite Film Modified Glassy Carbon Electrode. Electroanalysis 2005, 17, 607–612. DOI:10.1002/elan.200403129.
  • Ping, J.; Wu, J.; Wang, Y.; Ying, Y. Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid Using High-Performance Screen-Printed Graphene Electrode. Biosens. Bioelectron. 2012, 34, 70–76. DOI:10.1016/j.bios.2012.01.016.
  • Thiagarajan, S.; Chen, S.-M. Preparation and Characterization of PtAu Hybrid Film Modified Electrodes and Their Use in Simultaneous Determination of Dopamine, Ascorbic Acid and Uric Acid. Talanta 2007, 74, 212–222. DOI:10.1016/J.TALANTA.2007.05.049.
  • Liu, M.; Chen, Q.; Lai, C.; Zhang, Y.; Deng, J.; Li, H.; Yao, S. A Double Signal Amplification Platform for Ultrasensitive and Simultaneous Detection of Ascorbic Acid, Dopamine, Uric Acid and Acetaminophen Based on a Nanocomposite of Ferrocene Thiolate Stabilized Fe3O4@Au Nanoparticles with Graphene Sheet. Biosens. Bioelectron. 2013, 48, 75–81. DOI:10.1016/J.BIOS.2013.03.070.
  • Quan, D. P.; Tuyen, D. P.; Lam, T. D.; Tram, P. T. N.; Binh, N. H.; Viet, P. H. Electrochemically Selective Determination of Dopamine in the Presence of Ascorbic and Uric Acids on the Surface of the Modified Nafion/Single Wall Carbon Nanotube/Poly(3-Methylthiophene) Glassy Carbon Electrodes. Colloids Surf. B Biointerfaces 2011, 88, 764–770. DOI:10.1016/j.colsurfb.2011.08.012.
  • Li, Y.; Du, J.; Yang, J.; Liu, D.; Lu, X. Electrocatalytic Detection of Dopamine in the Presence of Ascorbic Acid and Uric Acid Using Single-Walled Carbon Nanotubes Modified Electrode. Colloids Surf. B Biointerfaces 2012, 97, 32–36. DOI:10.1016/j.colsurfb.2012.03.029.
  • Wu, S.; Xiao, L.; Du, Z.; Wang, H.; Yuan, Q.; Ji, H. KOH Assisted Activation of Microwave Exfoliated Graphite Oxide for Selective Voltammetric Determination of Dopamine and Uric Acid in the Presence of Ascorbic Acid. J. Electroanal. Chem. 2017, 804, 72–77. DOI:10.1016/j.jelechem.2017.09.029.
  • Wang, Y.; Huang, Y.; Wang, B.; Fang, T.; Chen, J.; Liang, C. Three-Dimensional Porous Graphene for Simultaneous Detection of Dopamine and Uric Acid in the Presence of Ascorbic Acid. J. Electroanal. Chem. 2016, 782, 76–83. DOI:10.1016/j.jelechem.2016.09.050.
  • Noroozifar, M.; Khorasani-Motlagh, M.; Taheri, A. Preparation of Silver Hexacyanoferrate Nanoparticles and Its Application for the Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Talanta 2010, 80, 1657–1664. DOI:10.1016/j.talanta.2009.10.005.
  • Kamyabi, M. A.; Shafiee, M. A. Electrocatalytic Oxidation of Dopamine, Ascorbic Acid and Uric Acid at poly2, 6 Diaminopyridine on the Surface of Carbon Nanotubes/Gc Electrodes. J. Braz. Chem. Soc. 2012, 23, 593–601. DOI:10.1590/S0103-50532012000400003.
  • Zhang, H.; Huang, Q.; Huang, Y.; Li, F.; Zhang, W.; Wei, C.; Chen, J.; Dai, P.; Huang, L.; Huang, Z.; et al. Graphitic Carbon Nitride Nanosheets Doped Graphene Oxide for Electrochemical Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Electrochim. Acta 2014, 142, 125–131. DOI:10.1016/j.electacta.2014.07.094.
  • Yan, J.; Liu, S.; Zhang, Z.; He, G.; Zhou, P.; Liang, H.; Tian, L.; Zhou, X.; Jiang, H. Simultaneous Electrochemical Detection of Ascorbic Acid, Dopamine and Uric Acid Based on Graphene Anchored with Pd-Pt Nanoparticles. Colloids Surf. B Biointerfaces 2013, 111, 392–397. DOI:10.1016/j.colsurfb.2013.06.030.
  • Nancy, T. E. M.; Kumary, V. A. Synergistic Electrocatalytic Effect of Graphene/Nickel Hydroxide Composite for the Simultaneous Electrochemical Determination of Ascorbic Acid, Dopamine and Uric Acid. Electrochim. Acta 2014, 133, 233–240. DOI:10.1016/j.electacta.2014.04.027.
  • Afraz, A.; Rafati, A. A.; Najafi, M. Optimization of Modified Carbon Paste Electrode with Multiwalled Carbon Nanotube/İonic Liquid/Cauliflower-like Gold Nanostructures for Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Mater. Sci. Eng. C 2014, 44, 58–68. DOI:10.1016/j.msec.2014.07.065.
  • Chen, L.-X.; Zheng, J.-N.; Wang, A.-J.; Wu, L.-J.; Chen, J.-R.; Feng, J.-J. Facile Synthesis of Porous Bimetallic Alloyed PdAg Nanoflowers Supported on Reduced Graphene Oxide for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid. Analyst 2015, 140, 3183–3192. DOI:10.1039/C4AN02200A.
  • He, W.; Ding, Y.; Zhang, W.; Ji, L.; Zhang, X.; Yang, F. A Highly Sensitive Sensor for Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid Based on Ultra-Small Ni Nanoparticles. J. Electroanal. Chem. 2016, 775, 205–211. DOI:10.1016/j.jelechem.2016.06.001.
  • Zhu, Q.; Bao, J.; Huo, D.; Yang, M.; Hou, C.; Guo, J.; Chen, M.; Fa, H.; Luo, X.; Ma, Y. 3D Graphene Hydrogel - Gold Nanoparticles Nanocomposite Modified Glassy Carbon Electrode for the Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Sens. Actuators B Chem. 2017, 238, 1316–1323. DOI:10.1016/j.snb.2016.09.116.
  • He, S.; Yu, Y.; Chen, Z.; Shi, Q.; Zhang, L. Synergistic Effect of Graphene and Multiwalled Carbon Nanotubes on a Glassy Carbon Electrode for Simultaneous Determination of Uric Acid and Dopamine in the Presence of Ascorbic Acid. Anal. Lett. 2015, 48, 248–258. DOI:10.1080/00032719.2014.942909.
  • Yu, Y.; Chen, Z.; Zhang, B.; Li, X.; Pan, J. Selective and Sensitive Determination of Uric Acid in the Presence of Ascorbic Acid and Dopamine by PDDA Functionalized Graphene/Graphite Composite Electrode. Talanta 2013, 112, 31–36. DOI:10.1016/j.talanta.2013.03.057.
  • Wang, C.; Xu, P.; Zhuo, K. Ionic Liquid Functionalized Graphene-Based Electrochemical Biosensor for Simultaneous Determination of Dopamine and Uric Acid in the Presence of Ascorbic Acid. Electroanalysis 2014, 26, 191–198. DOI:10.1002/elan.201300345.
  • Ensafi, A. A.; Taei, M.; Khayamian, T. Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid by Differential Pulse Voltammetry Using Tiron Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2010, 5, 116–130.
  • Hu, W.; Sun, D.; Ma, W. Silver Doped Poly(L-Valine) Modified Glassy Carbon Electrode for the Simultaneous Determination of Uric Acid, Ascorbic Acid and Dopamine. Electroanalysis 2010, 22, 584–589. DOI:10.1002/elan.200900376.
  • Xu, X.; Lin, Q.; Liu, A.; Chen, W.; Weng, X.; Wang, C.; Lin, X. Simultaneous Voltammetric Determination of Ascorbic Acid, Dopamine and Uric Acid Using Polybromothymol Blue Film-Modified Glassy Carbon Electrode. Chem. Pharm. Bull. 2010, 58, 788–793. DOI:10.1248/cpb.58.788.
  • Dursun, Z.; Gelmez, B. Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid at Pt Nanoparticles Decorated Multiwall Carbon Nanotubes Modified GCE. Electroanalysis 2010, 22, 1106–1114. DOI:10.1002/elan.200900525.
  • Ensafi, A. A.; Taei, M.; Khayamian, T.; Arabzadeh, A. Highly Selective Determination of Ascorbic Acid, Dopamine, and Uric Acid by Differential Pulse Voltammetry Using Poly(Sulfonazo III) Modified Glassy Carbon Electrode. Sens. Actuators, B Chem 2010, 147, 213–221. DOI:10.1016/j.snb.2010.02.048.
  • Habibi, B.; Pournaghi-Azar, M. H. Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid by Use of a MWCNT Modified Carbon-Ceramic Electrode and Differential Pulse Voltammetry. Electrochim. Acta 2010, 55, 5492–5498. DOI:10.1016/j.electacta.2010.04.052.
  • Zare, H. R.; Nasirizadeh, N. Comparison of the Electrochemical and Electroanalytical Behavior of Ascorbic Acid, Dopamine and Uric Acid at Bare, Activated and Multi-Wall Carbon Nanotubes Modified Glassy Carbon Electrodes. J. Iran. Chem. Soc. 2011, 8 (February), 55–66.
  • Sun, C. L.; Chang, C. T.; Lee, H. H.; Zhou, J.; Wang, J.; Sham, T. K.; Pong, W. F. Microwave-Assisted Synthesis of a Core-Shell MWCNT/GONR Heterostructure for the Electrochemical Detection of Ascorbic Acid, Dopamine, and Uric Acid. ACS Nano 2011, 5, 7788–7795. DOI:10.1021/nn2015908.
  • Lin, K.; Yin, C.; Chen, S. Simultaneous Determination of AA, DA, and UA Based on Bipolymers by Electropolymerization of Luminol and 3, 4-Ethylenedioxythiophene Monomers. Int J Electrochem Sci, 2011, 6, 3951–3965.
  • Kamyabi, M.; Narimani, O. Monfared, H. Electroless Deposition of Bis(4′-(4-Pyridyl)-2,2′:6′,2′′-Terpyridine) Iron (II) Thiocyanate Complex onto Carbon Nanotubes Modified Glassy Carbon Electrode: Application to Simultaneous Determination of Ascorbic Acid. J. Braz. Chem. Soc. 2011, 22, 468–477.
  • Mazloum-Ardakani, M.; Sheikh-Mohseni, M. A.; Benvidi, A. Electropolymerization of Thin Film Conducting Polymer and Its Application for Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Electroanalysis 2011, 23, 2822–2831. DOI:10.1002/elan.201100289.
  • Xiao, C.; Chu, X.; Yang, Y.; Li, X.; Zhang, X.; Chen, J. Hollow Nitrogen-Doped Carbon Microspheres Pyrolyzed from Self-Polymerized Dopamine and Its Application in Simultaneous Electrochemical Determination of Uric Acid, Ascorbic Acid and Dopamine. Biosens. Bioelectron. 2011, 26, 2934–2939. DOI:10.1016/j.bios.2010.11.041.
  • Sun, D.; Zhao, Q.; Tan, F.; Wang, X.; Gao, J. Simultaneous Detection of Dopamine, Uric Acid, and Ascorbic Acid Using SnO2 Nanoparticles/Multi-Walled Carbon Nanotubes/Carbon Paste Electrode. Anal. Methods 2012, 4, 3283. DOI:10.1039/c2ay25401h.
  • Niu, X.; Yang, W.; Guo, H.; Ren, J.; Yang, F.; Gao, J. A Novel and Simple Strategy for Simultaneous Determination of Dopamine, Uric Acid and Ascorbic Acid Based on the Stacked Graphene Platelet Nanofibers/İonic Liquids/Chitosan Modified Electrode. Talanta 2012, 99, 984–988. DOI:10.1016/j.talanta.2012.07.077.
  • Yue, Y.; Hu, G.; Zheng, M.; Guo, Y.; Cao, J.; Shao, S. A Mesoporous Carbon Nanofiber-Modified Pyrolytic Graphite Electrode Used for the Simultaneous Determination of Dopamine, Uric Acid, and Ascorbic Acid. Carbon N. Y. 2012, 50, 107–114. DOI:10.1016/j.carbon.2011.08.013.
  • Tian, X.; Cheng, C.; Yuan, H.; Du, J.; Xiao, D.; Xie, S.; Choi, M. M. F. Simultaneous Determination of L-Ascorbic Acid, Dopamine and Uric Acid with Gold Nanoparticles-β-Cyclodextrin-Graphene-Modified Electrode by Square Wave Voltammetry. Talanta 2012, 93, 79–85. DOI:10.1016/j.talanta.2012.01.047.
  • Bi, H.; Li, Y.; Liu, S.; Guo, P.; Wei, Z.; Lv, C.; Zhang, J.; Zhao, X. S. Carbon-Nanotube-Modified Glassy Carbon Electrode for Simultaneous Determination of Dopamine, Ascorbic Acid and Uric Acid: The Effect of Functional Groups. Sens. Actuators B Chem. 2012, 171-172, 1132–1140. DOI:10.1016/j.snb.2012.06.044.
  • Cui, R.; Wang, X.; Zhang, G.; Wang, C. Simultaneous Determination of Dopamine, Ascorbic Acid, and Uric Acid Using Helical Carbon Nanotubes Modified Electrode. Sens. Actuators B Chem. 2012, 161, 1139–1143. DOI:10.1016/j.snb.2011.11.040.
  • Hadi, M.; Rouhollahi, A. Simultaneous Electrochemical Sensing of Ascorbic Acid, Dopamine and Uric Acid at Anodized Nanocrystalline Graphite-like Pyrolytic Carbon Film Electrode. Anal. Chim. Acta 2012, 721, 55–60. DOI:10.1016/j.aca.2012.01.051.
  • Wang, Y.; Bi, C. Simultaneous Electrochemical Determination of Ascorbic Acid, Dopamine and Uric Acid Using Poly (Tyrosine)/Functionalized Multi-Walled Carbon Nanotubes Composite Film Modified Electrode. J. Mol. Liq. 2013, 177, 26–31. DOI:10.1016/j.molliq.2012.10.009.
  • Manivel, P.; Dhakshnamoorthy, M.; Balamurugan, A.; Ponpandian, N.; Mangalaraj, D.; Viswanathan, C. Conducting Polyaniline-Graphene Oxide Fibrous Nanocomposites: Preparation, Characterization and Simultaneous Electrochemical Detection of Ascorbic Acid, Dopamine and Uric Acid. RSC Adv. 2013, 3, 14428. DOI:10.1039/c3ra42322k.
  • Yu, S.; Luo, C.; Wang, L.; Peng, H.; Zhu, Z. Poly(3,4-Ethylenedioxythiophene)-Modified Ni/Silicon Microchannel Plate Electrode for the Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Analyst 2013, 138, 1149. DOI:10.1039/c2an36335f.
  • Troiani, E. D. P.; Faria, R. C. Cathodically Pretreated Poly(1-Aminoanthraquinone)-Modified Electrode for Determination of Ascorbic Acid, Dopamine, and Uric Acid. J. Appl. Electrochem. 2013, 43, 919–926. DOI:10.1007/s10800-013-0577-7.
  • Noroozifar, M.; Khorasani-Motlagh, M.; Rostami, S.; Zareian Jahromi, F. Ytterbium Fluoride Nanoparticles on Carbon Nanotubes: Preparation, Characterization and Application for Simultaneous Electrochemical Determination of Ascorbic Acid, Dopamine and Uric Acid. J. Iran. Chem. Soc. 2013, 10, 1025–1032. DOI:10.1007/s13738-013-0240-6.
  • de Pieri Troiani, E.; Rodrigues Pereira-Filho, E.; Censi Faria, R. Chemometric Strategies to Develop a Nanocomposite Electrode for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. Electroanalysis 2013, 25, 1988–1994. DOI:10.1002/elan.201300166.
  • Xue, Y.; Zhao, H.; Wu, Z. J.; Li, X. J.; He, Y. J.; Yuan, Z. B. Poly(Pyrocatechol-3,5-Disodiumsulfonate)/Multi-Walled Carbon Nanotubes Composite for Simultaneous Determination of Dopamine, Ascorbic Acid and Uric Acid. J. Nanosci. Nanotech. 2013, 13, 1563–1568. DOI:10.1166/jnn.2013.6024.
  • Zhang, L.; Yuan, W.-J.; Hou, B.-Q. Nano-Cu/PSA III Modified Glassy Carbon Electrode for Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. J. Electroanal. Chem. 2013, 689, 135–141. DOI:10.1016/j.jelechem.2012.11.006.
  • Zhang, W.; Chai, Y.; Yuan, R.; Han, J.; Chen, S. Deposited Gold Nanocrystals Enhanced Porous PTCA-Cys Layer for Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. Sens Actuators B Chem. 2013, 183, 157–162. DOI:10.1016/j.snb.2013.03.122.
  • Temoçin, Z. Modification of Glassy Carbon Electrode in Basic Medium by Electrochemical Treatment for Simultaneous Determination of Dopamine, Ascorbic Acid and Uric Acid. Sens Actuators B Chem. 2013, 176, 796–802. DOI:10.1016/j.snb.2012.09.078.
  • Wang, X.; Wu, M.; Tang, W.; Zhu, Y.; Wang, L.; Wang, Q.; He, P.; Fang, Y. Simultaneous Electrochemical Determination of Ascorbic Acid, Dopamine and Uric Acid Using a Palladium Nanoparticle/Graphene/Chitosan Modified Electrode. J. Electroanal. Chem. 2013, 695, 10–16. DOI:10.1016/j.jelechem.2013.02.021.
  • Zhang, B.; Huang, D.; Xu, X.; Alemu, G.; Zhang, Y.; Zhan, F.; Shen, Y.; Wang, M. Simultaneous Electrochemical Determination of Ascorbic Acid, Dopamine and Uric Acid with Helical Carbon Nanotubes. Electrochim. Acta 2013, 91, 261–266. DOI:10.1016/j.electacta.2012.12.026.
  • Zheng, X.; Zhou, X.; Ji, X.; Lin, R.; Lin, W. Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid Using Poly(4-Aminobutyric Acid) Modified Glassy Carbon Electrode. Sens Actuators B Chem. 2013, 178, 359–365. DOI:10.1016/j.snb.2012.12.115.
  • Deng, K.; Zhou, J.; Li, X. Noncovalent Nanohybrid of Cobalt Tetraphenylporphyrin with Graphene for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid. Electrochim. Acta 2013, 114, 341–346. DOI:10.1016/j.electacta.2013.09.164.
  • Teymourian, H.; Salimi, A.; Khezrian, S. Fe3O4 Magnetic Nanoparticles/Reduced Graphene Oxide Nanosheets as a Novel Electrochemical and Bioeletrochemical Sensing Platform. Biosens. Bioelectron. 2013, 49, 1–8. DOI:10.1016/j.bios.2013.04.034.
  • Zou, H. L.; Li, B. L.; Luo, H. Q.; Li, N. B. A Novel Electrochemical Biosensor Based on Hemin Functionalized Graphene Oxide Sheets for Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Sens. Actuators B Chem. 2015, 207, 535–541. DOI:10.1016/j.snb.2014.10.121.
  • Yang, Y. J.; Li, W. CTAB Functionalized Graphene Oxide/Multiwalled Carbon Nanotube Composite Modified Electrode for the Simultaneous Determination of Ascorbic Acid, Dopamine, Uric Acid and Nitrite. Biosens. Bioelectron. 2014, 56, 300–306. DOI:10.1016/j.bios.2014.01.037.
  • Liu, X.; Zhang, L.; Wei, S.; Chen, S.; Ou, X.; Lu, Q. Overoxidized Polyimidazole/Graphene Oxide Copolymer Modified Electrode for the Simultaneous Determination of Ascorbic Acid, Dopamine, Uric Acid, Guanine and Adenine. Biosens. Bioelectron. 2014, 57, 232–238. DOI:10.1016/j.bios.2014.02.017.
  • Fernandes, D. M.; Costa, M.; Pereira, C.; Bachiller-Baeza, B.; Rodríguez-Ramos, I.; Guerrero-Ruiz, A.; Freire, C. Novel Electrochemical Sensor Based on N-Doped Carbon Nanotubes and Fe3O4 Nanoparticles: Simultaneous Voltammetric Determination of Ascorbic Acid, Dopamine and Uric Acid. J. Colloid Interface Sci. 2014, 432, 207–213. DOI:10.1016/j.jcis.2014.06.050.
  • Liu, X.; Wei, S.; Chen, S.; Yuan, D.; Zhang, W. Graphene-Multiwall Carbon Nanotube-Gold Nanocluster Composites Modified Electrode for the Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. Appl. Biochem. Biotechnol. 2014, 173, 1717–1726. DOI:10.1007/s12010-014-0959-2.
  • Rafati, A. A.; Afraz, A.; Hajian, A.; Assari, P. Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid Using a Carbon Paste Electrode Modified with Multiwalled Carbon Nanotubes, Ionic Liquid, and Palladium Nanoparticles. Microchim. Acta 2014, 181, 1999–2008. DOI:10.1007/s00604-014-1293-7.
  • Ding, S. N.; Zheng, C. L.; Wan, N.; Cosnier, S. Graphene/Clay Composite Electrode Formed by Exfoliating Graphite with Laponite for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. Monatsh. Chem. 2014, 145, 1389–1394. DOI:10.1007/s00706-014-1225-6.
  • Jiang, J.; Du, X. Sensitive Electrochemical Sensors for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid Based on Au@Pd-Reduced Graphene Oxide Nanocomposites. Nanoscale 2014, 6, 11303–11309. DOI:10.1039/C4NR01774A.
  • Wang, H.; Ren, F.; Wang, C.; Yang, B.; Bin, D.; Zhang, K.; Du, Y. Simultaneous Determination of Dopamine, Uric Acid and Ascorbic Acid Using a Glassy Carbon Electrode Modified with Reduced Graphene Oxide. RSC Adv. 2014, 4, 26895–26901. DOI:10.1039/c4ra03148b.
  • Sun, H.; Chao, J.; Zuo, X.; Su, S.; Liu, X.; Yuwen, L.; Fan, C.; Wang, L. Gold Nanoparticle-Decorated MoS2 Nanosheets for Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. RSC Adv. 2014, 4, 27625. DOI:10.1039/c4ra04046e.
  • Wang, C.; Du, J.; Wang, H.; Zou, C.; Jiang, F.; Yang, P.; Du, Y. A Facile Electrochemical Sensor Based on Reduced Graphene Oxide and Au Nanoplates Modified Glassy Carbon Electrode for Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. Sens. Actuators B Chem. 2014, 204, 302–309. DOI:10.1016/j.snb.2014.07.077.
  • Lin, K. C.; Huang, J. Y.; Chen, S. M. Simultaneous Determination of Ascorbic Acid, Dopamine, Uric Acid and Hydrogen Peroxide Based on Co-Immobilization of PEDOT and FAD Using Multi-Walled Carbon Nanotubes. Anal. Methods 2014, 6, 8321–8327. DOI:10.1039/C4AY01639D.
  • Khudaish, E. A.; Al-Ajmi, K. Y.; Al-Harthi, S. H. A Solid-State Sensor Based on Ruthenium (II) Complex Immobilized on Polytyramine Film for the Simultaneous Determination of Dopamine, Ascorbic Acid and Uric Acid. Thin Solid Films 2014, 564, 390–396. DOI:10.1016/j.tsf.2014.05.056.
  • Kamel, M. M.; Abdalla, E. M.; Ibrahim, M. S.; Temerk, Y. M. Electrochemical Studies of Ascorbic Acid, Dopamine, and Uric Acid at a DL-Norvaline-Deposited Glassy Carbon Electrode. Can. J. Chem. 2014, 92, 329–336. DOI:10.1139/cjc-2014-0024.
  • Wu, D.; Li, Y.; Zhang, Y.; Wang, P.; Wei, Q.; Du, B. Sensitive Electrochemical Sensor for Simultaneous Determination of Dopamine, Ascorbic Acid, and Uric Acid Enhanced by Amino-Group Functionalized Mesoporous Fe3O4@Graphene Sheets. Electrochim. Acta 2014, 116, 244–249. DOI:10.1016/j.electacta.2013.11.033.
  • Lian, Q.; He, Z.; He, Q.; Luo, A.; Yan, K.; Zhang, D.; Lu, X.; Zhou, X. Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid Based on Tryptophan Functionalized Graphene. Anal. Chim. Acta 2014, 823, 32–39. DOI:10.1016/j.aca.2014.03.032.
  • Li, M.; Guo, W.; Li, H.; Dai, W.; Yang, B. Electrochemical Biosensor Based on One-Dimensional MgO Nanostructures for the Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. Sens Actuators B Chem. 2014, 204, 629–636. DOI:10.1016/j.snb.2014.08.022.
  • Du, J.; Yue, R.; Ren, F.; Yao, Z.; Jiang, F.; Yang, P.; Du, Y. Novel Graphene Flowers Modified Carbon Fibers for Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Biosens. Bioelectron. 2014, 53, 220–224. DOI:10.1016/j.bios.2013.09.064.
  • Yang, B.; Wang, H.; Du, J.; Fu, Y.; Yang, P.; Du, Y. Direct Electrodeposition of Reduced Graphene Oxide on Carbon Fiber Electrode for Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Colloids Surf. A Physicochem. Eng. Asp. 2014, 456, 146–152. DOI:10.1016/j.colsurfa.2014.05.029.
  • Zheng, X.; Guo, Y.; Zheng, J.; Zhou, X.; Li, Q.; Lin, R. Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid Using Poly(l-Leucine)/DNA Composite Film Modified Electrode. Sens. Actuators B Chem. 2015, 213, 188–194. DOI:10.1016/j.snb.2015.02.044.
  • Belaidi, F. S.; Civélas, A.; Castagnola, V.; Tsopela, A.; Mazenq, L.; Gros, P.; Launay, J.; Temple-Boyer, P. PEDOT-Modified Integrated Microelectrodes for the Detection of Ascorbic Acid, Dopamine and Uric Acid. Sens. Actuators B Chem. 2015, 214, 1–9. DOI:10.1016/j.snb.2015.03.005.
  • Imran, H.; Manikandan, P. N.; Dharuman, V. Facile and Green Synthesis of Graphene Oxide by Electrical Exfoliation of Pencil Graphite and Gold Nanoparticle for Non-Enzymatic Simultaneous Sensing of Ascorbic Acid, Dopamine and Uric Acid. RSC Adv. 2015, 5, 63513–63520. DOI:10.1039/C5RA11723B.
  • Zhang, Y.; Ji, Y.; Wang, Z.; Liu, S.; Zhang, T. Electrodeposition Synthesis of Reduced Graphene Oxide–Carbon Nanotube Hybrids on Indium Tin Oxide Electrode for Simultaneous Electrochemical Detection of Ascorbic Acid, Dopamine and Uric Acid. RSC Adv. 2015, 5, 106307–106314. DOI:10.1039/C5RA24727F.
  • Li, S.-M.; Wang, Y.-S.; Hsiao, S.-T.; Liao, W.-H.; Lin, C.-W.; Yang, S.-Y.; Tien, H.-W.; Ma, C.-C. M.; Hu, C.-C. Fabrication of a Silver Nanowire-Reduced Graphene Oxide-Based Electrochemical Biosensor and Its Enhanced Sensitivity in the Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. J. Mater. Chem. C 2015, 3, 9444–9453. DOI:10.1039/C5TC01564B.
  • Wang, S.; Zhang, W.; Zhong, X.; Chai, Y.; Yuan, R. Simultaneous Determination of Dopamine{,} Ascorbic Acid and Uric Acid Using a Multi-Walled Carbon Nanotube and Reduced Graphene Oxide Hybrid Functionalized by PAMAM and Au Nanoparticles. Anal. Methods 2015, 7, 1471–1477. DOI:10.1039/C4AY02086C.
  • Ramakrishnan, S.; Pradeep, K. R.; Raghul, A.; Senthilkumar, R.; Rangarajan, M.; Kothurkar, N. K. One-Step Synthesis of Pt-Decorated Graphene–Carbon Nanotubes for the Electrochemical Sensing of Dopamine, Uric Acid and Ascorbic Acid. Anal. Methods 2015, 7, 779–786. DOI:10.1039/C4AY02487G.
  • Sun, J.; Li, L.; Zhang, X.; Liu, D.; Lv, S.; Zhu, D.; Wu, T.; You, T. Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid at a Nitrogen-Doped Carbon Nanofiber Modified Electrode. RSC Adv. 2015, 5, 11925–11932. DOI:10.1039/C4RA13857K.
  • Zhang, X.; Yan, W.; Zhang, J.; Li, Y.; Tang, W.; Xu, Q. NiCo-Embedded in Hierarchically Structured N-Doped Carbon Nanoplates for the Efficient Electrochemical Determination of Ascorbic Acid, Dopamine, and Uric Acid. RSC Adv. 2015, 5, 65532–65539. DOI:10.1039/C5RA10937J.
  • Lin, K.; Li, Y.; Chen, S. Carboxy-Functionalized Multi-Walled Carbon Nanotubes Hybridized with Poly (Xanthurenic Acid) Enhance the Electrocatalytic Oxidation of Ascorbic Acid, Dopamine, and Uric Acid 2015, 10, 2764–2775.
  • Li, Y.; Huang, L.; Chen, S.; Lou, B.; Liu, X. One-Step Fabrication of a New Carbon Paste Electrode for Dopamine, Ascorbic Acid and Uric Acid Determination in Serum 2015, 10, 7671–7683.
  • Ghanbari, K.; Hajheidari, N. ZnO-CuxO/Polypyrrole Nanocomposite Modified Electrode for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. Anal. Biochem. 2015, 473, 53–62. DOI:10.1016/j.ab.2014.12.013.
  • Ghanbari, K.; Hajheidari, N. Simultaneous Electrochemical Determination of Dopamine, Uric Acid and Ascorbic Acid Using Silver Nanoparticles Deposited on Polypyrrole Nanofibers. J. Polym. Res. 2015, 22, 1–9. DOI:10.1007/s10965-015-0797-0.
  • Zhao, D.; Fan, D.; Wang, J.; Xu, C. Hierarchical Nanoporous Platinum-Copper Alloy for Simultaneous Electrochemical Determination of Ascorbic Acid, Dopamine, and Uric Acid. Microchim. Acta 2015, 182, 1345–1352. DOI:10.1007/s00604-015-1450-7.
  • Li, F.; Chai, Y.; Yuan, R.; Li, X.; Yang, Y. Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid Based on Gold Nanoparticles-PTCA-Cys Composites Modified Electrodes. Jnl. Chinese Chemical Soc. 2015, 62, 739–746. DOI:10.1002/jccs.201500118.
  • Parvin, M. H. Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid, at a Graphene Paste Electrode Modified with Functionalized Graphene Sheets. Electroanalysis 2015, 27, 1394–1402. DOI:10.1002/elan.201400702.
  • Zhang, X.; Ma, L. X.; Zhang, Y. C. Electrodeposition of Platinum Nanosheets on C<İnf >60</İnf > Decorated Glassy Carbon Electrode as a Stable Electrochemical Biosensor for Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. Electrochim. Acta 2015, 177, 118–127. DOI:10.1016/j.electacta.2015.01.202.
  • Ouyang, X.; Luo, L.; Ding, Y.; Liu, B.; Xu, D.; Huang, A. Simultaneous Determination of Uric Acid, Dopamine and Ascorbic Acid Based on Poly (Bromocresol Green) Modified Glassy Carbon Electrode. J. Electroanal. Chem 2015, 748, 1–7. DOI:10.1016/j.jelechem.2015.04.026.
  • Qi, S.; Zhao, B.; Tang, H.; Jiang, X. Determination of Ascorbic Acid, Dopamine, and Uric Acid by a Novel Electrochemical Sensor Based on Pristine Graphene. Electrochim. Acta 2015, 161, 395–402. DOI:10.1016/j.electacta.2015.02.116.
  • Zhao, L.; Li, H.; Gao, S.; Li, M.; Xu, S.; Li, C.; Guo, W.; Qu, C.; Yang, B. MgO Nanobelt-Modified Graphene-Tantalum Wire Electrode for the Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Electrochim. Acta 2015, 168, 191–198. DOI:10.1016/j.electacta.2015.03.215.
  • Zou, C.; Zhong, J.; Wang, J.; Shiraishi, Y.; Li, S.; Yan, B.; Guo, J.; Du, Y. Fabrication of Reduced Graphene Oxide–Bimetallic Pd@Au Nanocomposites for Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. RSC Adv. 2016, 6, 92502–92509. DOI:10.1039/C6RA18254B.
  • Deng, W.; Yuan, X.; Tan, Y.; Ma, M.; Xie, Q. Three-Dimensional Graphene-like Carbon Frameworks as a New Electrode Material for Electrochemical Determination of Small Biomolecules. Biosens. Bioelectron. 2016, 85, 618–624. DOI:10.1016/j.bios.2016.05.065.
  • Tsierkezos, N. G.; Ritter, U.; Thaha, Y. N.; Downing, C.; Szroeder, P.; Scharff, P. Multi-Walled Carbon Nanotubes Doped with Boron as an Electrode Material for Electrochemical Studies on Dopamine, Uric Acid, and Ascorbic Acid. Microchim. Acta 2016, 183, 35–47. DOI:10.1007/s00604-015-1585-6.
  • Joshi, A.; Schuhmann, W.; Nagaiah, T. C. Mesoporous Nitrogen Containing Carbon Materials for the Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. Sens Actuators B Chem. 2016, 230, 544–555. DOI:10.1016/j.snb.2016.02.050.
  • Zhang, G.; He, P.; Feng, W.; Ding, S.; Chen, J.; Li, L.; He, H.; Zhang, S.; Dong, F. Carbon Nanohorns/Poly (Glycine) Modified Glassy Carbon Electrode : Preparation, Characterization and Simultaneous Electrochemical Determination of Uric Acid, Dopamine and Ascorbic Acid. Jeac 2016, 760, 24–31. DOI:10.1016/j.jelechem.2015.11.035.
  • Tsierkezos, N. G.; Othman, S. H.; Ritter, U.; Hafermann, L.; Knauer, A.; Köhler, J. M.; Downing, C.; McCarthy, E. K. Electrochemical Analysis of Ascorbic Acid, Dopamine, and Uric Acid on Nobel Metal Modified Nitrogen-Doped Carbon Nanotubes. Sens. Actuators B Chem. 2016, 231, 218–229. DOI:10.1016/j.snb.2016.03.032.
  • Huan, W.; Li-Guang, X.; Xue-Feng, C. H. U.; Yao-Dan, C. H. I.; Xiao-Tian, Y. Rational Design of Gold Nanoparticle/Graphene Hybrids for Simultaneous Electrochemical Determination of Ascorbic Acid, Dopamine and Uric Acid. Chinese J. Anal. Chem. 2016, 44, e1617–e1625. DOI:10.1016/S1872-2040(16)60983-0.
  • Yan, S.; Li, X.; Xiong, Y.; Wang, M.; Yang, L.; Liu, X.; Li, X.; Alshahrani, L. A. M.; Liu, P.; Zhang, C. Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid Using a Glassy Carbon Electrode Modified with the Nickel(II)-Bis(1,10-Phenanthroline) Complex and Single-Walled Carbon Nanotubes. Microchim. Acta 2016, 183, 1401–1408. DOI:10.1007/s00604-016-1776-9.
  • Zhao, D.; Yu, G.; Tian, K.; Xu, C. A Highly Sensitive and Stable Electrochemical Sensor for Simultaneous Detection towards Ascorbic Acid, Dopamine, and Uric Acid Based on the Hierarchical Nanoporous PtTi Alloy. Biosens. Bioelectron. 2016, 82, 119–126. DOI:10.1016/j.bios.2016.03.074.
  • Zhang, X.; Zhang, Y.; Ma, L. One-Pot Facile Fabrication of Graphene-Zinc Oxide Composite and Its Enhanced Sensitivity for Simultaneous Electrochemical Detection of Ascorbic Acid, Dopamine and Uric Acid. Sens. Actuators B Chem. 2016, 227, 488–496. DOI:10.1016/j.snb.2015.12.073.
  • Hathoot, A. A.; Hassan, K. M.; Essa, W. A.; Abdel-Azzem, M. Simultaneous Determination of Ascorbic Acid, Uric Acid and Dopamine at Modified Electrode Based on Hybrid Nickel Hexacyanoferrate/Poly(1,5-Diaminonaphthalene). J. Iran. Chem. Soc. 2017, 14, 1789–1799. DOI:10.1007/s13738-017-1119-8.
  • Nsabimana, A.; Lai, J.; Li, S.; Hui, P.; Liu, Z.; Xu, G. Surfactant-Free Synthesis of Three-Dimensional Nitrogen-Doped Hierarchically Porous Carbon and Its Application as an Electrode Modification Material for Simultaneous Sensing of Ascorbic Acid, Dopamine and Uric Acid. Analyst 2017, 142, 478–484. DOI:10.1039/C6AN02584F.
  • Dinesh, B.; Saraswathi, R.; Senthil Kumar, A. Water Based Homogenous Carbon Ink Modified Electrode as an Efficient Sensor System for Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. Electrochim. Acta 2017, 233, 92–104. DOI:10.1016/j.electacta.2017.02.139.
  • Selvarajan, S.; Suganthi, A.; Rajarajan, M. A Facile Approach to Synthesis of Mesoporous SnO2/Chitosan Nanocomposite Modified Electrode for Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Surf. Interfaces 2017, 7, 146. DOI:10.1016/j.surfin.2017.03.008.
  • Zhu, Q.; Bao, J.; Huo, D.; Yang, M.; Wu, H.; Hou, C.; Zhao, Y.; Luo, X.; Fa, H. 3DGH-Fc Based Electrochemical Sensor for the Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. J. Electroanal. Chem. 2017, 799, 459–467. DOI:10.1016/j.jelechem.2017.07.004.
  • Dos Santos, P. L.; Katic, V.; Toledo, K. C. F.; Bonacin, J. A. Title: Photochemical One-Pot Synthesis of Reduced Graphene Oxide/Prussian Blue Nanocomposite for Simultaneous Electrochemical Detection of Ascorbic Acid, Dopamine, and Uric Acid. Sens. Actuators B. Chem. 2017, DOI:10.1016/j.snb.2017.09.036.
  • Karimi, M. A.; Hatefi-Mehrjardi, A.; Soleymanzadeh, M. Sensitive Electrochemical Detection of Dopamine, Uric and Ascorbic Acids Based on Poly- (Dianix Yellow) Film Modified Electrode 2017, 12, 7089–7102. DOI:10.20964/2017.08.16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.