1,897
Views
56
CrossRef citations to date
0
Altmetric
Review

A review on coffee leaves: Phytochemicals, bioactivities and applications

ORCID Icon
Pages 1008-1025 | Received 19 Jul 2018, Accepted 06 Nov 2018, Published online: 22 Dec 2018

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (3)

Manivel Perumal, Parthiban Marimuthu & Xiumin Chen. (2022) Investigation into the site-specific binding interactions between chlorogenic acid and ovalbumin using multi-spectroscopic and in silico simulation studies. Journal of Biomolecular Structure and Dynamics 40:14, pages 6619-6633.
Read now
Marcia Ribeiro, Livia Alvarenga, Ludmila F. M. F. Cardozo, Julie A. Kemp, Ligia S. Lima, Jonatas S. de Almeida, Viviane de O. Leal, Peter Stenvinkel, Paul G. Shiels & Denise Mafra. (2022) The magical smell and taste: Can coffee be good to patients with cardiometabolic disease?. Critical Reviews in Food Science and Nutrition 0:0, pages 1-22.
Read now
Jianbo Xiao & Weibin Bai. (2019) Bioactive phytochemicals. Critical Reviews in Food Science and Nutrition 59:6, pages 827-829.
Read now

Articles from other publishers (53)

Yu Sun, Qingwei Cao, Yuanyuan Huang, Tingting Lu, Haile Ma & Xiumin Chen. (2023) Mechanistic study on the inhibition of α ‐amylase and α ‐glucosidase using the extract of ultrasound‐treated coffee leaves . Journal of the Science of Food and Agriculture 104:1, pages 63-74.
Crossref
Juliana DePaula, Sara C. Cunha, Isabel M.P.L.V.O. Ferreira, Ana Carolina V. Porto, Adriano G. Cruz, Mateus Petrarca, Maria Tereza Trevisan, Ildi Revi & Adriana Farah. (2023) Volatile fingerprinting, sensory characterization, and consumer acceptance of pure and blended arabica coffee leaf teas. Food Research International 173, pages 113361.
Crossref
Siddhi Patil, S.R. Shankar & Pushpa S. Murthy. (2023) Impact of different varieties and mature stages on phytochemicals from Coffea arabica and Coffea robusta leaves. Biochemical Systematics and Ecology 110, pages 104699.
Crossref
Francisco Hélio Alves de Andrade, Ana Maria Oliveira Ferreira, Lillian Magalhães Azevedo, Meline de Oliveira Santos, Gladyston Rodrigues Carvalho, Mário Lucio Vilela de Resende, Elisa Monteze Bicalho & Vânia Aparecida Silva. (2023) IBA and melatonin increase trigonelline and caffeine during the induction and initiation of adventitious roots in Coffea arabica L. cuttings. Scientific Reports 13:1.
Crossref
James P. Tam, Jiayi Huang, Shining Loo, Yimeng Li & Antony Kam. (2023) Ginsentide-like Coffeetides Isolated from Coffee Waste Are Cell-Penetrating and Metal-Binding Microproteins. Molecules 28:18, pages 6556.
Crossref
Ines Jmoui, Manel Mechmeche, Roua Khalfallah, Khaoula Setti, Moktar Hamdi & Faten Kachouri. (2023) Protein isolate of coffee seed meal obtained by a response surface methodology: a new antioxidant's source. Journal of Food Measurement and Characterization 17:4, pages 4100-4113.
Crossref
Aline Camargo Jesus de Souza Wuillda, Fernanda das Neves Costa, Rafael Garrett, Mauro dos Santos de Carvalho & Ricardo Moreira Borges. (2023) High‐speed countercurrent chromatography with offline detection by electrospray mass spectrometry and nuclear magnetic resonance detection as a tool to resolve complex mixtures: A practical approach using Coffea arabica leaf extract . Phytochemical Analysis.
Crossref
E. S. Harsha Haridas, Susmita Bhattacharya, M. K. Ravi Varma & Goutam Kumar Chandra. (2023) Bioinspired 5-caffeoylquinic acid capped silver nanoparticles using Coffee arabica leaf extract for high-sensitive cysteine detection. Scientific Reports 13:1.
Crossref
Suhuan Mei & Xiumin Chen. (2023) Combination of HPLC–orbitrap‐MS/MS and network pharmacology to identify the anti‐inflammatory phytochemicals in the coffee leaf extracts. Food Frontiers.
Crossref
Yoon-Gyo Lee, Eun-Jin Cho, Shila Maskey, Dinh-Truong Nguyen & Hyeun-Jong Bae. (2023) Value-Added Products from Coffee Waste: A Review. Molecules 28:8, pages 3562.
Crossref
Suhuan Mei, Jian Ding & Xiumin Chen. (2023) Identification of differential volatile and non-volatile compounds in coffee leaves prepared from different tea processing steps using HS-SPME/GC-MS and HPLC-Orbitrap-MS/MS and investigation of the binding mechanism of key phytochemicals with olfactory and taste receptors using molecular docking. Food Research International, pages 112760.
Crossref
Suhuan Mei & Xiumin Chen. (2023) Investigation into the anti-inflammatory mechanism of coffee leaf extract in LPS-induced Caco-2/U937 co-culture model through cytokines and NMR-based untargeted metabolomics analyses. Food Chemistry 404, pages 134592.
Crossref
Xiaojing Shen, Fanqiu Nie, Haixian Fang, Kunyi Liu, Zelin Li, Xingyu Li, Yumeng Chen, Rui Chen, Tingting Zheng & Jiangping Fan. (2022) Comparison of chemical compositions, antioxidant activities, and acetylcholinesterase inhibitory activities between coffee flowers and leaves as potential novel foods. Food Science & Nutrition 11:2, pages 917-929.
Crossref
Fernanda R. Castro-Moretti, Jean-Christophe Cocuron, Humberto Castillo-Gonzalez, Efrain Escudero-Leyva, Priscila Chaverri, Oliveiro Guerreiro-Filho, Jason C. Slot & Ana Paula Alonso. (2023) A metabolomic platform to identify and quantify polyphenols in coffee and related species using liquid chromatography mass spectrometry. Frontiers in Plant Science 13.
Crossref
Yuanyuan Huang, Yu Sun, Tingting Lu & Xiumin Chen. (2022) Effects of hot‐air drying on the bioactive compounds, quality attributes, and drying and color change kinetics of coffee leaves. Journal of Food Science 88:1, pages 214-227.
Crossref
Po-Wei Tsai, Lemmuel L. Tayo, Jasmine U. Ting, Cheng-Yang Hsieh, Chia-Jung Lee, Chih-Ling Chen, Hsiao-Chuan Yang, Hsing-Yu Tsai, Chung-Chuan Hsueh & Bor-Yann Chen. (2023) Interactive deciphering electron-shuttling characteristics of Coffea arabica leaves and potential bioenergy-steered anti-SARS-CoV-2 RdRp inhibitor via microbial fuel cells. Industrial Crops and Products 191, pages 115944.
Crossref
Zhou Heli, Chen Hongyu, Bao Dapeng, Tan Yee Shin, Zhong Yejun, Zhang Xi & Wu Yingying. (2022) Recent advances of γ-aminobutyric acid: Physiological and immunity function, enrichment, and metabolic pathway. Frontiers in Nutrition 9.
Crossref
Yu Sun, Yuanyuan Huang, Tingting Lu & Xiumin Chen. (2022) Temporal kinetics of changes in color, phytochemicals, γ-aminobutyric acid, enzyme activity and antioxidant activity of coffee leaves during postharvest storage. Scientia Horticulturae 304, pages 111360.
Crossref
Gilmar Alves de Mesquita Júnior, Ygor Ferreira Garcia da Costa, Valéria de Mello, Fabiano Freire Costa, Mirian Pereira Rodarte, Juliana de Carvalho da Costa, Maria Silvana Alves & Fernanda Maria Pinto Vilela. (2022) Chemical characterisation by UPLC‐Q‐ToF‐MS/MS and antibacterial potential of Coffea arabica L. leaves: A coffee by‐product . Phytochemical Analysis 33:7, pages 1036-1044.
Crossref
Jian Ding, Suhuan Mei, Ling Gao, Qiang Wang, Haile Ma & Xiumin Chen. (2022) Tea processing steps affect chemical compositions, enzyme activities, and antioxidant and anti‐inflammatory activities of coffee leaves. Food Frontiers 3:3, pages 505-516.
Crossref
Marc C. Steger, Marina Rigling, Patrik Blumenthal, Valerie Segatz, Andrès Quintanilla-Belucci, Julia M. Beisel, Jörg Rieke-Zapp, Steffen Schwarz, Dirk W. Lachenmeier & Yanyan Zhang. (2022) Coffee Leaf Tea from El Salvador: On-Site Production Considering Influences of Processing on Chemical Composition. Foods 11:17, pages 2553.
Crossref
Lorenzo Cangeloni, Claudia Bonechi, Gemma Leone, Marco Consumi, Marco Andreassi, Agnese Magnani, Claudio Rossi & Gabriella Tamasi. (2022) Characterization of Extracts of Coffee Leaves (Coffea arabica L.) by Spectroscopic and Chromatographic/Spectrometric Techniques. Foods 11:16, pages 2495.
Crossref
Yu Sun, Dayi Ji, Haile Ma & Xiumin Chen. (2022) Ultrasound accelerated γ-aminobutyric acid accumulation in coffee leaves through influencing the microstructure, enzyme activity, and metabolites. Food Chemistry 385, pages 132646.
Crossref
Motiki M. Mofokeng, Christian P. Du Plooy, Hintsa T. Araya, Stephen O. Amoo, Salmina N. Mokgehle, Kgabo M. Pofu & Phatu W. Mashela. (2022) Medicinal plant cultivation for sustainable use and commercialisation of high-value crops. South African Journal of Science 118:7/8.
Crossref
Yudithia Maxiselly, Pisamai Anusornwanit, Adirek Rugkong, Rawee Chiarawipa & Pin Chanjula. (2022) Morpho-Physiological Traits, Phytochemical Composition, and Antioxidant Activity of Canephora Coffee Leaves at Various Stages. International Journal of Plant Biology 13:2, pages 106-114.
Crossref
Andrea Montis, Florence Souard, Cédric Delporte, Piet Stoffelen, Caroline Stévigny & Pierre Van Antwerpen. (2022) Targeted and Untargeted Mass Spectrometry-Based Metabolomics for Chemical Profiling of Three Coffee Species. Molecules 27:10, pages 3152.
Crossref
Yanrui Zhang, Jiamin Fu, Qiying Zhou, Fangdong Li, Yihua Shen, Zhili Ye, Dingkun Tang, Ning Chi, Lanqing Li, Shuyu Ma, Mallano Ali Inayat, Tieying Guo, Jian Zhao & Penghui Li. (2022) Metabolite Profiling and Transcriptome Analysis Revealed the Conserved Transcriptional Regulation Mechanism of Caffeine Biosynthesis in Tea and Coffee Plants. Journal of Agricultural and Food Chemistry 70:10, pages 3239-3251.
Crossref
Apirada Manphae, Aphidech Sangdee, Yaowalak Srisuwan & Prasong Srihanam. (2022) Phytochemical Contents and Antioxidant Activity of Thai Sweet Potato (Ipomoea batatas L.) Extracts. Asian Journal of Plant Sciences 21:3, pages 499-506.
Crossref
Dayi Ji, Qiang Wang, Tingting Lu, Haile Ma & Xiumin Chen. (2022) The effects of ultrasonication on the phytochemicals, antioxidant, and polyphenol oxidase and peroxidase activities in coffee leaves. Food Chemistry 373, pages 131480.
Crossref
Lucas Eduardo de Oliveira Aparecido, João A Lorençone, Pedro A Lorençone, Glauco de Souza Rolim, Kamila C de Meneses, José R da Silva Cabral de Moraes & Guilherme B Torsoni. (2021) Can nonlinear agrometeorological models estimate coffee foliation?. Journal of the Science of Food and Agriculture 102:2, pages 584-596.
Crossref
Nadine Tritsch, Marc C. Steger, Valerie Segatz, Patrik Blumenthal, Marina Rigling, Steffen Schwarz, Yanyan Zhang, Heike Franke & Dirk W. Lachenmeier. (2022) Risk Assessment of Caffeine and Epigallocatechin Gallate in Coffee Leaf Tea. Foods 11:3, pages 263.
Crossref
Qiang Wang, Suhuan Mei, Perumal Manivel, Haile Ma & Xiumin Chen. (2022) Zinc oxide nanoparticles synthesized using coffee leaf extract assisted with ultrasound as nanocarriers for mangiferin. Current Research in Food Science 5, pages 868-877.
Crossref
D. S. M. Perera, R. C. L. De Silva, L. D. C. Nayanajith, H. C. D. P. Colombage, T. S. Suresh, W. P. K. M. Abeysekera & I. R. M. Kottegoda. (2021) Anti-Inflammatory and Antioxidant Properties of Coffea Arabica/Reduced Graphene Oxide Nanocomposite prepared by green synthesis. Material Science Research India 18:3, pages 305-317.
Crossref
Shah Saud & Ahmad Mohammad Salamatullah. (2021) Relationship between the Chemical Composition and the Biological Functions of Coffee. Molecules 26:24, pages 7634.
Crossref
Rawaa Saladdin Jumaa, Dhuha Ismael Abdulmajeed & Abdulkarim Jafar Karim. (2021) Evaluation of secondary metabolites of herbal plant extracts as an antiviral effect on infectious bursal disease virus isolates in embryonated chicken eggs. Veterinary World, pages 2971-2978.
Crossref
Dão Pedro de Carvalho Neto, Xavier P. Gonot-Schoupinsky & Freda N. Gonot-Schoupinsky. (2021) Coffee as a Naturally Beneficial and Sustainable Ingredient in Personal Care Products: A Systematic Scoping Review of the Evidence. Frontiers in Sustainability 2.
Crossref
Dayi Ji, Haile Ma & Xiumin Chen. (2021) Ultrasonication increases γ‐aminobutyric acid accumulation in coffee leaves and affects total phenolic content and angiotensin‐converting enzyme inhibitory activity. Journal of Food Processing and Preservation 45:10.
Crossref
Andrea Montis, Florence Souard, Cédric Delporte, Piet Stoffelen, Caroline Stévigny & Pierre Van Antwerpen. (2021) Coffee Leaves: An Upcoming Novel Food?. Planta Medica 87:12/13, pages 949-963.
Crossref
Mayy M. Mostafa, Enas Ali, Marie Gamal & Mohamed A. Farag. (2021) How do coffee substitutes compare to coffee? A comprehensive review of its quality characteristics, sensory characters, phytochemicals, health benefits and safety. Food Bioscience 43, pages 101290.
Crossref
Phongsathorn Motham, Ansaya Thonpho & Prasong Srihanam. (2021) Antioxidative Compounds Investigation in Sugarcane Bagasse Extracts Fractionated by Silica Gel Column Chromatography. Asian Journal of Plant Sciences 20:4, pages 601-608.
Crossref
Gonçalo Oliveira, Cláudia P. Passos, Paula Ferreira, Manuel A. Coimbra & Idalina Gonçalves. (2021) Coffee By-Products and Their Suitability for Developing Active Food Packaging Materials. Foods 10:3, pages 683.
Crossref
Suhuan Mei, Haile Ma & Xiumin Chen. (2021) Anticancer and anti-inflammatory properties of mangiferin: A review of its molecular mechanisms. Food and Chemical Toxicology 149, pages 111997.
Crossref
J. L. Spinoso-Castillo, E. Escamilla-Prado, V. H. Aguilar-Rincón, T. Corona-Torres, G. García-de los Santos & V. Morales-Ramos. (2020) Quantitative comparison of three main metabolites in leaves of Coffea accessions by UPLC-MS/MS. European Food Research and Technology 247:2, pages 375-384.
Crossref
Perumal Manivel & Xiumin Chen. 2021. Handbook of Dietary Phytochemicals. Handbook of Dietary Phytochemicals 1033 1063 .
Magdalena Jeszka-Skowron, Agnieszka Zgoła-Grześkowiak & Tomasz Grześkowiak. 2021. Analytical Methods in the Determination of Bioactive Compounds and Elements in Food. Analytical Methods in the Determination of Bioactive Compounds and Elements in Food 31 81 .
Feyera Gobena Gemechu. (2020) Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends in Food Science & Technology 104, pages 235-261.
Crossref
Kittisak Kerdchan, Nuanchai Kotsaeng & Prasong Srihanam. (2020) Oxidative Compounds Screening in the Extracts of Sugarcane (Saccharum officinarum L.) Planted in Maha Sarakham Province, Thailand. Asian Journal of Plant Sciences 19:4, pages 390-397.
Crossref
Xiumin Chen, Jian Ding, Dayi Ji, Suqun He & Haile Ma. (2020) Optimization of ultrasonic‐assisted extraction conditions for bioactive components from coffee leaves using the Taguchi design and response surface methodology. Journal of Food Science 85:6, pages 1742-1751.
Crossref
Nurmasari Widyastuti, Gemala Anjani, Vita Gustin Almira, Suci Eka Putri & Amali Rica Pratiwi. (2020) Effects of the administration of brewed Robusta coffee leaves on total antioxidant status in rats with high-fat, high-fructose diet-induced metabolic syndrome. Potravinarstvo Slovak Journal of Food Sciences 14, pages 258-263.
Crossref
Tizian Klingel, Jonathan I. Kremer, Vera Gottstein, Tabata Rajcic de Rezende, Steffen Schwarz & Dirk W. Lachenmeier. (2020) A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union. Foods 9:5, pages 665.
Crossref
. (2020) Technical Report on the notification of infusion from coffee leaves (Coffea arabica L. and/or Coffea canephora Pierre ex A. Froehner) as a traditional food from a third country pursuant to Article 14 of Regulation (EU) 2015/2283. EFSA Supporting Publications 17:2.
Crossref
Perumal Manivel & Xiumin Chen. 2020. Handbook of Dietary Phytochemicals. Handbook of Dietary Phytochemicals 1 31 .
Xiumin Chen, David D. Kitts, Dayi Ji & Jian Ding. (2019) Free radical scavenging activities of phytochemical mixtures and aqueous methanolic extracts recovered from processed coffee leaves. International Journal of Food Science & Technology 54:10, pages 2872-2879.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.