49
Views
35
CrossRef citations to date
0
Altmetric
ORIGINAL

Carbon Nanotubes Grown on the Surface of Cathode Deposit by Arc Discharge

, , &
Pages 1027-1039 | Received 06 May 1996, Published online: 15 Aug 2006

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (2)

Jyoti Verma, Sumit Lal & Cornelis JF Van Noorden. (2014) Nanoparticles for hyperthermic therapy: synthesis strategies and applications in glioblastoma. International Journal of Nanomedicine 9, pages 2863-2877.
Read now
Shane H. Durbach, Mike J. Witcomb & Neil J. Coville. (2005) The Effect of Hydrogen, Helium and Their Mixtures on the Synthesis of Carbon Nanotubes in a DC Arc‐Discharger. Fullerenes, Nanotubes and Carbon Nanostructures 13:2, pages 155-169.
Read now

Articles from other publishers (33)

Sandeep Pandey, Manoj Karakoti, Dinesh Bhardwaj, Gaurav Tatrari, Richa Sharma, Lata Pandey, Man-Jong Lee & Nanda Gopal Sahoo. (2023) Recent advances in carbon-based materials for high-performance perovskite solar cells: gaps, challenges and fulfillment. Nanoscale Advances 5:6, pages 1492-1526.
Crossref
Shobhana sharma. (2023) Current Synthetic Methodologies of Carbon Nanotubes: A Review. Mini-Reviews in Organic Chemistry 20:1, pages 55-80.
Crossref
Rashi Nathawat, Satyapal S. Rathore, Poonam R. Kharangarh, Reena Devi & Anita Kumari. 2023. Carbon Nanomaterials and their Nanocomposite-Based Chemiresistive Gas Sensors. Carbon Nanomaterials and their Nanocomposite-Based Chemiresistive Gas Sensors 169 203 .
Priyannth Ramasami Sundharbaabu, Junhyuck Chang & Jung Heon Lee. 2023. Handbook of Chemical Biology of Nucleic Acids. Handbook of Chemical Biology of Nucleic Acids 1797 1834 .
Rinyarat Naraprawatphong, Chayanaphat Chokradjaroen, Satita Thiangtham, Li Yang & Nagahiro Saito. (2022) Nanoscale advanced carbons as an anode for lithium-ion battery. Materials Today Advances 16, pages 100290.
Crossref
Priyannth Ramasami Sundharbaabu, Junhyuck Chang & Jung Heon Lee. 2022. Handbook of Chemical Biology of Nucleic Acids. Handbook of Chemical Biology of Nucleic Acids 1 38 .
Giorgio Speranza. (2021) Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. Nanomaterials 11:4, pages 967.
Crossref
Pradip Kumar. 2021. Handbook on Synthesis Strategies for Advanced Materials. Handbook on Synthesis Strategies for Advanced Materials 367 420 .
Tejal Mehta, Renuka Mishra, Chintan Pansara, Chetan Dhal, Namdev Dhas, Kartik Hariharan & Jayvadan K. Patel. 2021. Emerging Technologies for Nanoparticle Manufacturing. Emerging Technologies for Nanoparticle Manufacturing 397 420 .
Vaibhav Jain, Amit Kumar Tripathi, Krishna Saini, Dinesh Deva & Indranil Lahiri. (2018) Copper nanowire–carbon nanotube hierarchical structure for enhanced field emission. Journal of Materials Science: Materials in Electronics 29:16, pages 13620-13630.
Crossref
. 2018. Nanoparticle Technology Handbook. Nanoparticle Technology Handbook 49 107 .
Tapan GuptaTapan Gupta. 2018. Carbon. Carbon 229 257 .
Rasel Das, Zohreh Shahnavaz, Md. Eaqub Ali, Mohammed Moinul Islam & Sharifah Bee Abd Hamid. (2016) Can We Optimize Arc Discharge and Laser Ablation for Well-Controlled Carbon Nanotube Synthesis?. Nanoscale Research Letters 11:1.
Crossref
Sónia Simões, Filomena Viana & Manuel F. Vieira. 2016. Nanomaterials and Nanocomposites. Nanomaterials and Nanocomposites 75 106 .
L Pershin, A Mitrasinovic & J Mostaghimi. (2013) Treatment of refractory powders by a novel, high enthalpy dc plasma. Journal of Physics D: Applied Physics 46:22, pages 224019.
Crossref
. 2012. Nanoparticle Technology Handbook. Nanoparticle Technology Handbook 49 112 .
Jan Prasek, Jana Drbohlavova, Jana Chomoucka, Jaromir Hubalek, Ondrej Jasek, Vojtech Adam & Rene Kizek. (2011) Methods for carbon nanotubes synthesis—review. Journal of Materials Chemistry 21:40, pages 15872.
Crossref
Maher S Amer. 2010. Raman Spectroscopy, Fullerenes and Nanotechnology. Raman Spectroscopy, Fullerenes and Nanotechnology 109 181 .
Noorhana YahyaKrzysztof Koziol, Bojan Obrad Boskovic & Noorhana Yahya. 2011. Carbon and Oxide Nanostructures. Carbon and Oxide Nanostructures 23 49 .
Y. Jiang, H. Wang, X. F. Shang, Z. H. Li & M. Wang. (2009) Influence of NH3 atmosphere on the growth and structures of carbon nanotubes synthesized by the arc-discharge method. Inorganic Materials 45:11, pages 1237-1239.
Crossref
Yoshinobu Fukumori, Toshiyuki Nomura, Tadafumi Adschiri, Satoshi Ohara, Fumio Saito, Makio Naito, Kikuo Okuyama, Masayoshi Kawahara, Hisao Suzuki, Takafumi Sasaki, Masayoshi Fuji, Shinji Inagaki, Hirofumi Takeuchi & Yoshinori Ando. 2008. Nanoparticle Technology Handbook. Nanoparticle Technology Handbook 49 112 .
Nathan S. Lawrence, Randhir P. Deo & Joseph Wang. (2005) Comparison of the Electrochemical Reactivity of Electrodes Modified with Carbon Nanotubes from Different Sources. Electroanalysis 17:1, pages 65-72.
Crossref
Yoshinori Ando, Xinluo Zhao, Toshiki Sugai & Mukul Kumar. (2004) Growing carbon nanotubes. Materials Today 7:10, pages 22-29.
Crossref
Shaoming Huang, Xianyu Cai, Chunsheng Du & Jie Liu. (2003) Oriented Long Single Walled Carbon Nanotubes on Substrates from Floating Catalysts. The Journal of Physical Chemistry B 107:48, pages 13251-13254.
Crossref
D S Tang, S S Xie, B H Chang, L F Sun, Z Q Liu, X P Zou, Y B Li, L J Ci, W Liu, W Y Zhou & G Wang. (2002) Effect of acetylene in buffer gas on the microstructures of carbon nanotubes in arc discharge. Nanotechnology 13:4, pages L1-L4.
Crossref
Y. Ando, X. Zhao & H. Shimoyama. (2001) Structure analysis of purified multiwalled carbon nanotubes. Carbon 39:4, pages 569-574.
Crossref
A. Fonseca & J. B. Nagy. 2001. Carbon Filaments and Nanotubes: Common Origins, Differing Applications?. Carbon Filaments and Nanotubes: Common Origins, Differing Applications? 75 84 .
Ming Su, Bo Zheng & Jie Liu. (2000) A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chemical Physics Letters 322:5, pages 321-326.
Crossref
Y. Ando, X. Zhao, H. Kataura, Y. Achiba, K. Kaneto, M. Tsuruta, S. Uemura & S. Iijima. (2000) Multiwalled carbon nanotubes prepared by hydrogen arc. Diamond and Related Materials 9:3-6, pages 847-851.
Crossref
Y. Ando, X. Zhao & H. Shimoyama. (1999) Carbonaceous Products by Hydrogen Arc Discharge. Crystal Research and Technology 34:5-6, pages 597-603.
Crossref
Y. Ando, X. Zhao, H. Shimoyama, G. Sakai & K. Kaneto. (1999) Physical properties of multiwalled carbon nanotubes. International Journal of Inorganic Materials 1:1, pages 77-82.
Crossref
X. Zhao, M. Ohkohchi, M. Wang, S. Iijima, T. Ichihashi & Y. Ando. (1997) Preparation of high-grade carbon nanotubes by hydrogen arc discharge. Carbon 35:6, pages 775-781.
Crossref
Y. Ando, X. Zhao & M. Ohkohchi. (1997) Production of petal-like graphite sheets by hydrogen arc discharge. Carbon 35:1, pages 153-158.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.