79
Views
47
CrossRef citations to date
0
Altmetric
Original Articles

The role of higher-symmetry phases in anisotropy of theoretical tensile strength of metals and intermetallics

, &
Pages 653-658 | Published online: 20 Aug 2009

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (3)

Sergiy Kotrechko, Oleksandr Ovsjannikov, Tatjana Mazilova, Igor Mikhailovskij, Evgenij Sadanov & Nataliya Stetsenko. (2017) Inherent hydrostatic tensile strength of tungsten nanocrystals. Philosophical Magazine 97:12, pages 930-943.
Read now
T.I. Mazilova, V.A. Ksenofontov, V.N. Voyevodin, E.V. Sadanov & I.M. Mikhailovskij. (2011) Mechanical recrystallization of ultra-strength tungsten nanoneedles. Philosophical Magazine Letters 91:4, pages 304-312.
Read now
Anatoly P Shpak, Sergiy O Kotrechko, Tatjana I Mazilova & Igor M Mikhailovskij. (2009) Inherent tensile strength of molybdenum nanocrystals. Science and Technology of Advanced Materials 10:4.
Read now

Articles from other publishers (44)

Zhiqin Wen, Yuhong Zhao, Jianhua Li & Hua Hou. (2019) Phase Stability and Thermo-Physical Properties of Nickel-Aluminum Binary Chemically Disordered Systems via First-Principles Study. Metals and Materials International 27:6, pages 1469-1477.
Crossref
Neda Abdoshahi, Petra Spoerk-Erdely, Martin Friák, Svea Mayer, Mojmír Šob & David Holec. (2020) Ab initio study of chemical disorder as an effective stabilizing mechanism of bcc-based . Physical Review Materials 4:10.
Crossref
R.F. Zhang, S.H. Zhang, Y.Q. Guo, Z.H. Fu, D. Legut, T.C. Germann & S. Veprek. (2019) First-principles design of strong solids: Approaches and applications. Physics Reports 826, pages 1-49.
Crossref
Jia-Hua Wang, Yong Lu, Xiao-Lin Zhang & Xiao-hong Shao. (2018) The elastic behaviors and theoretical tensile strength of -TiAl alloy from the first principles calculations . Intermetallics 101, pages 1-7.
Crossref
Sergiy Kotrechko, Olexandr Ovsijannikov, Igor Mikhailovskij & Nataliya Stetsenko. 2018. Molecular Dynamics. Molecular Dynamics.
Minru Wen & Chong-Yu Wang. (2018) Transition-metal alloying of : Effects on the ideal uniaxial compressive strength from first-principles calculations . Physical Review B 97:2.
Crossref
Li-Jiang Gui & Yue-Lin Liu. (2016) First-principles studying the properties of oxygen in vanadium: Thermodynamics and tensile/shear behavior. Computational Condensed Matter 7, pages 7-13.
Crossref
You Sung Han & Vikas Tomar. (2013) An ab initio study of the peak tensile strength of tungsten with an account of helium point defects. International Journal of Plasticity 48, pages 54-71.
Crossref
Li-Jiang Gui, Yue-Lin Liu, Wei-Tian Wang, Ye Wei, Ying Zhang, Guang-Hong Lu & Jun-En Yao. (2013) Behaviors of alloying element titanium in vanadium: From energetics to tensile/shear deformation. Computational Materials Science 77, pages 348-354.
Crossref
Xiaoqing Li, Stephan Schönecker, Jijun Zhao, Börje Johansson & Levente Vitos. (2013) Ideal strength of random alloys from first principles. Physical Review B 87:21.
Crossref
GuangHong Lu & Lei Zhang. (2012) Connecting microscopic structure and macroscopic mechanical properties of structural materials from first-principles. Science China Physics, Mechanics and Astronomy 55:12, pages 2305-2315.
Crossref
Yue-Lin Liu, Li-Jiang Gui & Shuo Jin. (2012) Ab initio investigation of the mechanical properties of copper . Chinese Physics B 21:9, pages 096102.
Crossref
Göran Grimvall, Blanka Magyari-Köpe, Vidvuds Ozoliņš & Kristin A. Persson. (2012) Lattice instabilities in metallic elements. Reviews of Modern Physics 84:2, pages 945-986.
Crossref
Jie Wang, Jian-Ying Qi & Xian Zhou. (2012) Ideal strength and deformation-induced phase transformation of hcp metals Re, Ru, and Os: A first-principles study. Materials Science and Engineering: A 534, pages 353-364.
Crossref
Naoyuki Nagasako, Ryoji Asahi & Jürgen Hafner. (2012) Ideal tensile and shear strength of a gum metal approximant: Ab initio density functional calculations . Physical Review B 85:2.
Crossref
S. Banerjee, J.K. Chakravartty, J.B. Singh & R. Kapoor. 2012. Functional Materials. Functional Materials 467 505 .
Hongzhi Fu, XiaoFeng Li, WenFang Liu, Yanming Ma, Tao Gao & Xinhua Hong. (2011) Electronic and dynamical properties of NiAl studied from first principles. Intermetallics 19:12, pages 1959-1967.
Crossref
M. Friák, T. Hickel, F. Körmann, A. Udyansky, A. Dick, J. von Pezold, D. Ma, O. Kim, W.A. Counts, M. Šob, T. Gebhardt, D. Music, J. Schneider, D. Raabe & J. Neugebauer. (2011) Determining the Elasticity of Materials Employing Quantum-mechanical Approaches: From the Electronic Ground State to the Limits of Materials Stability. steel research international 82:2, pages 86-100.
Crossref
Yue-Lin Liu, Hong-Bo Zhou, Shuo Jin, Ying Zhang & Guang-Hong Lu. (2010) Effects of H on Electronic Structure and Ideal Tensile Strength of W: A First-Principles Calculation. Chinese Physics Letters 27:12, pages 127101.
Crossref
Naoyuki Nagasako, Michal Jahnátek, Ryoji Asahi & Jürgen Hafner. (2010) Anomalies in the response of V, Nb, and Ta to tensile and shear loading: Ab initio density functional theory calculations . Physical Review B 81:9.
Crossref
Liu Yue-Lin, Zhang Ying, Hong Rong-Jie & Lu Guang-Hong. (2009) Study of the theoretical tensile strength of Fe by a first-principles computational tensile test. Chinese Physics B 18:5, pages 1923-1930.
Crossref
Hong-Bo Zhou, Ying Zhang, Yue-Lin Liu, Masanori Kohyama, Peng-Gang Yin & Guang-Hong Lu. (2009) First-principles characterization of the anisotropy of theoretical strength and the stress–strain relation for a TiAl intermetallic compound. Journal of Physics: Condensed Matter 21:17, pages 175407.
Crossref
Hongzhi Fu, Dehua Li, Feng Peng, Tao Gao & Xinlu Cheng. (2008) Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures. Computational Materials Science 44:2, pages 774-778.
Crossref
Jian-Min Zhang, Yan Yang, Ke-Wei Xu & Vincent Ji. (2008) Theoretical strength and structural response of Cu crystal. Computational Materials Science 43:4, pages 917-923.
Crossref
Vu Van Hung, K. Masuda-Jindo & Nguyen Thi Hoa. (2011) Study of ideal strengths of metals and alloys by statistical moment method: Temperature dependence. Journal of Materials Research 22:8, pages 2230-2240.
Crossref
Y.L. Liu, L.M. Liu, S.Q. Wang & H.Q. Ye. (2007) First-principles study of shear deformation in TiAl and Ti3Al. Intermetallics 15:3, pages 428-435.
Crossref
M. Šob. 2007. Multiscale Materials Modelling. Multiscale Materials Modelling 1 24 .
Luming Shen & Zhen Chen. (2005) A multi-scale simulation of tungsten film delamination from silicon substrate. International Journal of Solids and Structures 42:18-19, pages 5036-5056.
Crossref
Mojmír Šob, Jaroslav Pokluda, Miroslav Černý, Pavel Šandera & V. Vitek. (2005) Theoretical Strength of Metals and Intermetallics from First Principles. Materials Science Forum 482, pages 33-38.
Crossref
Yoshitaka Umeno & Takayuki Kitamura. (2005) Criterion of Mechanical Instability in Inhomogeneous Atomic System. Materials Science Forum 482, pages 127-130.
Crossref
Mojmír Šob, Martin Friák, Dominik Legut & Václav Vitek. 2005. Complex Inorganic Solids. Complex Inorganic Solids 307 325 .
M. Černý, J. Pokluda & P. Šandera. (2004) Ab initio analysis of theoretical isotropic strength and elasticity of nickel aluminide compounds. Materials Science and Engineering: A 387-389, pages 923-925.
Crossref
M. Šob, M. Friák, D. Legut, J. Fiala & V. Vitek. (2004) The role of ab initio electronic structure calculations in studies of the strength of materials. Materials Science and Engineering: A 387-389, pages 148-157.
Crossref
James R. Morris, Yiying Ye, Yong-Bin Lee, Bruce N. Harmon, Karl A. GschneidnerJr.Jr. & Alan M. Russell. (2004) Ab initio calculation of bulk and defect properties of ductile rare-earth intermetallic compounds. Acta Materialia 52:16, pages 4849-4857.
Crossref
Tianshu Li, J. W. Morris & D. C. Chrzan. (2004) Ideal tensile strength of transition-metal aluminides . Physical Review B 70:5.
Crossref
Takayuki Kitamura, Yoshitaka Umeno & Ryoji Fushino. (2004) Instability criterion of inhomogeneous atomic system. Materials Science and Engineering: A 379:1-2, pages 229-233.
Crossref
Guang-Hong Lu, Shenghua Deng, Tianmin Wang, Masanori Kohyama & Ryoichi Yamamoto. (2004) Theoretical tensile strength of an Al grain boundary. Physical Review B 69:13.
Crossref
Takayuki Kitamura, Yoshitaka Umeno & Nagatomo Tsuji. (2004) Analytical evaluation of unstable deformation criterion of atomic structure and its application to nanostructure. Computational Materials Science 29:4, pages 499-510.
Crossref
Kisaragi Yashiro, Masashi Oho & Yoshihiro Tomita. (2004) Ab initio study on the lattice instability of silicon and aluminum under [001] tension. Computational Materials Science 29:4, pages 397-406.
Crossref
M. Friák, M. Šob & V. Vitek. (2003) Ab initio study of the ideal tensile strength and mechanical stability of transition-metal disilicides . Physical Review B 68:18.
Crossref
Weidong Luo, D. Roundy, Marvin L. Cohen & J. W. Morris. (2002) Ideal strength of bcc molybdenum and niobium. Physical Review B 66:9.
Crossref
Y. Mishin, M. J. Mehl & D. A. Papaconstantopoulos. (2002) Embedded-atom potential for . Physical Review B 65:22.
Crossref
C.R Krenn, D Roundy, J.W MorrisJrJr & Marvin L Cohen. (2001) Ideal strengths of bcc metals. Materials Science and Engineering: A 319-321, pages 111-114.
Crossref
M. Friák, M. Šob & V. Vitek. (2011) Ab initio simulation of a tensile test in MoSi 2 and WSi 2 . MRS Proceedings 646.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.