603
Views
38
CrossRef citations to date
0
Altmetric
Original Articles

Computational and experimental study of oxygen-enhanced axisymmetric laminar methane flames

, , &
Pages 497-527 | Received 24 Jul 2007, Accepted 30 Nov 2007, Published online: 20 May 2008

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (9)

Amir Mardani, Amirhossein Azimi & Hamed Karimi Motaalegh Mahalegi. (2022) An Experimental Study on Kerosene Spray Combustion Under Conventional and Hot-Diluted Conditions. Combustion Science and Technology 194:13, pages 2712-2751.
Read now
Anurag Mishra, Pushan Sharma, Bisrat Yoseph Gebreyesus, Mayank Kumar & Anjan Ray. (2022) A Comprehensive Study on Flame Length under Oxygen Enhanced Laminar Non-premixed Combustion. Combustion Science and Technology 0:0, pages 1-22.
Read now
Su Cao, Bin Ma, Davide Giassi, Beth Anne V. Bennett, Marshall B. Long & Mitchell D. Smooke. (2018) Effects of pressure and fuel dilution on coflow laminar methane–air diffusion flames: A computational and experimental study. Combustion Theory and Modelling 22:2, pages 316-337.
Read now
Puthiyaparambath Kozhumal Shijin, Vasudevan Raghavan & Viswanathan Babu. (2016) Numerical investigation of flame–vortex interactions in laminar cross-flow non-premixed flames in the presence of bluff bodies. Combustion Theory and Modelling 20:4, pages 683-706.
Read now
Su Cao, Beth Anne V. Bennett & Mitchell D. Smooke. (2015) MC-Smooth: A mass-conserving, smooth vorticity–velocity formulation for multi-dimensional flows. Combustion Theory and Modelling 19:6, pages 657-695.
Read now
R. Sreenivasan, V. Raghavan & T. Sundararajan. (2012) An investigation of flame zones and burning velocities of laminar unconfined methane-oxygen premixed flames. Combustion Theory and Modelling 16:2, pages 199-219.
Read now
Pedro Henrique de Almeida Konzen, Thomas Richter, Uwe Riedel & Ulrich Maas. (2011) Implementation of REDIM reduced chemistry to model an axisymmetric laminar diffusion methane–air flame. Combustion Theory and Modelling 15:3, pages 299-323.
Read now
Karnam Bhadraiah & Vasudevan Raghavan. (2010) Numerical simulation of laminar co-flow methane–oxygen diffusion flames: effect of chemical kinetic mechanisms. Combustion Theory and Modelling 15:1, pages 23-46.
Read now
M. Sánchez-Sanz, B.A.V. Bennett, M.D. Smooke & A. Liñán. (2010) Influence of Strouhal number on pulsating methane–air coflow jet diffusion flames. Combustion Theory and Modelling 14:3, pages 453-478.
Read now

Articles from other publishers (29)

Anurag Mishra, Pushan Sharma, Mayank Kumar & Anjan Ray. (2023) Flame structure and stability for oxygen enhanced non-premixed combustion of highly diluted methane with helium and nitrogen. Fuel 347, pages 128469.
Crossref
Yindi Zhang, Yue Xin, Mengting Si, Fengshan Liu & Chun Lou. (2023) Experimental study on soot formation and primary particle size in oxy-combustion ethylene diffusion flames under CO2 substitution for N2. Case Studies in Thermal Engineering 48, pages 103060.
Crossref
Sheng Zhu, Jiahan Yu, Jian Wu, Linghong Chen, Ruixin Zhu, Xuecheng Wu & Kefa Cen. (2023) Effects of blending methane, propane, and propylene on soot evolution in ethylene diffusion flames based on optical diagnostics. Fuel 334, pages 126317.
Crossref
M.A. Ashraf, H.A. Ahmed, S. Steinmetz, M.J. Dunn & A.R. Masri. (2021) On the effects of varying coflow oxygen on soot and precursor nanoparticles in ethylene laminar diffusion flames. Fuel 300, pages 120913.
Crossref
Seyed Sepehr Mostafayi & Fariborz Rashidi. (2020) Effect of dividing single flare tip into multiple tips on soot reduction. Clean Technologies and Environmental Policy 22:5, pages 1097-1108.
Crossref
Mohsen Nasiri Soloklou & Ali Akbar Golneshan. (2020) Numerical investigation on effects of fuel tube diameter and co-flow velocity in a methane/air non-premixed flame. Heat and Mass Transfer 56:5, pages 1697-1711.
Crossref
Mohsen Nasiri Soloklou & Ali Akbar Golneshan. (2020) Effect of CO2 diluent on the formation of pollutant NOx in the laminar non-premixed methane-air flame. International Journal of Heat and Mass Transfer 148, pages 119071.
Crossref
Huiwen Zhu, Yan Gong, Lei He, Qinghua Guo, Xueli Chen & Guangsuo Yu. (2019) Effects of CO and H2 addition on OH* chemiluminescence characteristics in laminar rich inverse diffusion flames. Fuel 254, pages 115554.
Crossref
Yindi Zhang, Fengshan Liu, Daniel Clavel, Gregory J. Smallwood & Chun Lou. (2019) Measurement of soot volume fraction and primary particle diameter in oxygen enriched ethylene diffusion flames using the laser-induced incandescence technique. Energy 177, pages 421-432.
Crossref
Lei He, Qinghua Guo, Yan Gong, Fuchen Wang & Guangsuo Yu. (2019) Investigation of OH* chemiluminescence and heat release in laminar methane–oxygen co-flow diffusion flames. Combustion and Flame 201, pages 12-22.
Crossref
Nadim W. Chakroun, Dan Michaels, Santosh J. Shanbhogue & Ahmed F. Ghoniem. (2018) Response of Premixed Stoichiometric Oxy Flames to Strain: Role of Chemistry and Transport. Journal of Propulsion and Power 34:4, pages 825-835.
Crossref
Yindi Zhang, Fengshan Liu & Chun Lou. (2018) Experimental and Numerical Investigations of Soot Formation in Laminar Coflow Ethylene Flames Burning in O 2 /N 2 and O 2 /CO 2 Atmospheres at Different O 2 Mole Fractions . Energy & Fuels 32:5, pages 6252-6263.
Crossref
J.P. Soussi, R. Demarco, J.L. Consalvi, F. Liu & A. Fuentes. (2017) Influence of soot aging on soot production for laminar propane diffusion flames. Fuel 210, pages 472-481.
Crossref
Arup Jyoti Bhowal & Bijan Kumar Mandal. (2017) Numerical Simulation of Transient Development of Flame, Temperature and Velocity under Reduced Gravity in a Methane Air Diffusion Flame. Microgravity Science and Technology 29:1-2, pages 151-175.
Crossref
F. Escudero, A. Fuentes, J.-L. Consalvi, F. Liu & R. Demarco. (2016) Unified behavior of soot production and radiative heat transfer in ethylene, propane and butane axisymmetric laminar diffusion flames at different oxygen indices. Fuel 183, pages 668-679.
Crossref
Hassan Abdul-Sater, Gautham Krishnamoorthy & Mario Ditaranto. (2015) Predicting Radiative Heat Transfer in Oxy-Methane Flame Simulations: An Examination of Its Sensitivities to Chemistry and Radiative Property Models. Journal of Combustion 2015, pages 1-20.
Crossref
B. Garten, F. Hunger, D. Messig, B. Stelzner, D. Trimis & C. Hasse. (2015) Detailed radiation modeling of a partial-oxidation flame. International Journal of Thermal Sciences 87, pages 68-84.
Crossref
B. Stelzner, F. Hunger, A. Laugwitz, M. Gräbner, S. Voss, K. Uebel, M. Schurz, R. Schimpke, S. Weise, S. Krzack, D. Trimis, C. Hasse & B. Meyer. (2013) Development of an inverse diffusion partial oxidation flame and model burner contributing to the development of 3rd generation coal gasifiers. Fuel Processing Technology 110, pages 33-45.
Crossref
Franziska Hunger, Björn Stelzner, Dimosthenis Trimis & Christian Hasse. (2012) Flamelet-Modeling of Inverse Rich Diffusion Flames. Flow, Turbulence and Combustion 90:4, pages 833-857.
Crossref
Andrès Fuentes, Rodrigo Henríquez, Fatiha Nmira, Fengshan Liu & Jean-Louis Consalvi. (2013) Experimental and numerical study of the effects of the oxygen index on the radiation characteristics of laminar coflow diffusion flames. Combustion and Flame 160:4, pages 786-795.
Crossref
Danny Messig, Franziska Hunger, Jens Keller & Christian Hasse. (2013) Evaluation of radiation modeling approaches for non-premixed flamelets considering a laminar methane air flame. Combustion and Flame 160:2, pages 251-264.
Crossref
B. Stelzner, F. Hunger, S. Voss, J. Keller, C. Hasse & D. Trimis. (2013) Experimental and numerical study of rich inverse diffusion flame structure. Proceedings of the Combustion Institute 34:1, pages 1045-1055.
Crossref
S. Arun, S. Raghuram, R. Sreenivasan & Vasudevan Raghavan. (2012) Effect of hydrogen addition in the co-flow of a methane diffusion flame in reducing nitric oxide emissions. International Journal of Hydrogen Energy 37:24, pages 19198-19209.
Crossref
S. S. Krishnan, M. K. Saini, Y. Zheng & J. P. Gore. (2012) Radiation Properties of Oxygen-Enhanced Normal and Inverse Diffusion Flames. Journal of Heat Transfer 134:2.
Crossref
K Bhadraiah & V Raghavan. (2011) A numerical study of the effect of radial confinement on the characteristics of laminar co-flow methane–oxygen diffusion flames. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225:5, pages 1213-1228.
Crossref
Juan Carlos González Palencia, Andrés Adolfo Amell Arrieta & Francisco Javier Cadavid Sierra. (2009) The characteristics of oxygen-enriched combustion and perspectives regarding its application in SMEs having high-temperature processes. Ingeniería e Investigación 29:3, pages 23-28.
Crossref
Beth Anne V. Bennett, Charles S. McEnally, Lisa D. Pfefferle, Mitchell D. Smooke & Meredith B. Colket. (2009) Computational and experimental study of the effects of adding dimethyl ether and ethanol to nonpremixed ethylene/air flames. Combustion and Flame 156:6, pages 1289-1302.
Crossref
B.C. Connelly, M.B. Long, M.D. Smooke, R.J. Hall & M.B. Colket. (2009) Computational and experimental investigation of the interaction of soot and NO in coflow diffusion flames. Proceedings of the Combustion Institute 32:1, pages 777-784.
Crossref
B.C. Connelly, B.A.V. Bennett, M.D. Smooke & M.B. Long. (2009) A paradigm shift in the interaction of experiments and computations in combustion research. Proceedings of the Combustion Institute 32:1, pages 879-886.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.