255
Views
52
CrossRef citations to date
0
Altmetric
Original Articles

Integrated Genetic Programming and Genetic Algorithm Approach to Predict Surface Roughness

&
Pages 475-491 | Published online: 07 Feb 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (15)

Behzad Bahrami Joo, Ali Jamali & Nader Nariman-zadeh. (2022) Multi-objective robust design approach usage in integration of bond graph and genetic programming. International Journal of Modelling and Simulation 42:5, pages 743-759.
Read now
M. Bodaghi, M. Mobin, D. Ban, S. V. Lomov & M. Nikzad. (2022) Surface quality of printed porous materials for permeability rig calibration. Materials and Manufacturing Processes 37:5, pages 548-558.
Read now
Lubin Li, Mingyang Wu, Xianli Liu, Yaonan Cheng & Yongxin Yu. (2017) The prediction of surface roughness of PCBN turning GH4169 based on adaptive genetic algorithm. Integrated Ferroelectrics 180:1, pages 118-132.
Read now
Abdelfeteh Sadok, Rachid Zentar & Nor-Eddine Abriak. (2016) Genetic programming for granular compactness modelling. European Journal of Environmental and Civil Engineering 20:10, pages 1249-1261.
Read now
Miha Kovačič. (2015) Modeling of Total Decarburization of Spring Steel with Genetic Programming. Materials and Manufacturing Processes 30:4, pages 434-443.
Read now
Guillem Quintana, Andres Bustillo & Joaquim Ciurana. (2012) Prediction, monitoring and control of surface roughness in high-torque milling machine operations. International Journal of Computer Integrated Manufacturing 25:12, pages 1129-1138.
Read now
Miran Brezocnik, Borut Buchmeister & Leo Gusel. (2011) Evolutionary Algorithm Approaches to Modeling of Flow Stress. Materials and Manufacturing Processes 26:3, pages 501-507.
Read now
G. Quintana, J. de Ciurana & J. Ribatallada. (2010) Surface Roughness Generation and Material Removal Rate in Ball End Milling Operations. Materials and Manufacturing Processes 25:6, pages 386-398.
Read now
Wojciech Paszkowicz. (2009) Genetic Algorithms, a Nature-Inspired Tool: Survey of Applications in Materials Science and Related Fields. Materials and Manufacturing Processes 24:2, pages 174-197.
Read now
M. Correa, C. Bielza, M. de J. Ramirez & J.R. Alique. (2008) A Bayesian network model for surface roughness prediction in the machining process. International Journal of Systems Science 39:12, pages 1181-1192.
Read now
Z. W. Zhong, L. P. Khoo & S. T. Han. (2007) Neural-Network Predicting of Surface Finish or Cutting Parameters for Carbide and Diamond Turning Processes. Materials and Manufacturing Processes 23:1, pages 92-97.
Read now
Miha Kovacic, Peter Uratnik, Miran Brezocnik & Radomir Turk. (2007) Prediction of the Bending Capability of Rolled Metal Sheet by Genetic Programming. Materials and Manufacturing Processes 22:5, pages 634-640.
Read now
Miran Brezocnik, Miha Kovacic & Leo Gusel. (2005) Comparison Between Genetic Algorithm and Genetic Programming Approach for Modeling the Stress Distribution. Materials and Manufacturing Processes 20:3, pages 497-508.
Read now
N. Chakraborti. (2004) Genetic algorithms in materials design and processing. International Materials Reviews 49:3-4, pages 246-260.
Read now

Articles from other publishers (37)

Hang Yao, Kaifu Zhang, Hui Cheng, Sipeng CAO & Bin Luo. (2023) An adaptive modelling approach using a novel modified AOA/SVR for prediction of drilling-induced delamination in CFRP/Ti stacks. Journal of Manufacturing Processes 102, pages 259-274.
Crossref
Laura Millán, Gabriel Kronberger, Ricardo Fernández, Gizo Bokuchava, Patrice Halodova, Alberto Sáez-Maderuelo, Gaspar González-Doncel & J. Ignacio Hidalgo. (2023) Prediction of microscopic residual stresses using genetic programming. Applications in Engineering Science 15, pages 100141.
Crossref
János Kundrák, Csaba Felhő & Antal Nagy. (2022) Analysis and Prediction of Roughness of Face Milled Surfaces using CAD Model. Manufacturing Technology 22:5, pages 558-572.
Crossref
R. Suresh Kumar, S. Senthil Kumar, K. Murugan, B. Guruprasad, Sreekanth Manavalla, S. Madhu, M. Hariprabhu, S. Balamuralitharan & S. Venkatesa Prabhu. (2021) Optimization of CNC End Milling Process Parameters of Low-Carbon Mold Steel Using Response Surface Methodology and Grey Relational Analysis. Advances in Materials Science and Engineering 2021, pages 1-11.
Crossref
Mohammed el Amin Bourouis, Abdeldjalil Zadjaoui & Abdelkader Djedid. (2020) Contribution of two artificial intelligence techniques in predicting the secondary compression index of fine-grained soils. Innovative Infrastructure Solutions 5:3.
Crossref
Miha Kovačič & Uroš Župerl. (2020) Genetic programming in the steelmaking industry. Genetic Programming and Evolvable Machines 21:1-2, pages 99-128.
Crossref
Mohammed Yunus & Mohammad S. Alsoufi. (2019) Mathematical Modeling of Multiple Quality Characteristics of a Laser Microdrilling Process Used in Al7075/SiC p Metal Matrix Composite Using Genetic Programming . Modelling and Simulation in Engineering 2019, pages 1-15.
Crossref
Fenglin Yuan & Tim Mueller. (2017) Identifying models of dielectric breakdown strength from high-throughput data via genetic programming. Scientific Reports 7:1.
Crossref
Changfu Liu, Lida Zhu & Chenbing Ni. (2017) The chatter identification in end milling based on combining EMD and WPD. The International Journal of Advanced Manufacturing Technology 91:9-12, pages 3339-3348.
Crossref
Srđan Jović, Nebojša Arsić, Vukoje Vukojević, Obrad Anicic & Slađana Vujičić. (2017) Determination of the important machining parameters on the chip shape classification by adaptive neuro-fuzzy technique. Precision Engineering 48, pages 18-23.
Crossref
Mustafa Bozdemir. (2017) The Effects of Humidity on Cast PA6G during Turning and Milling Machining. Advances in Materials Science and Engineering 2017, pages 1-8.
Crossref
Long Wen, Xinyu Li, Liang Gao & Wenchao Yi. (2015) Surface roughness prediction in end milling by using predicted point oriented local linear estimation method. The International Journal of Advanced Manufacturing Technology 84:9-12, pages 2523-2535.
Crossref
Tim Mueller, Aaron Gilad Kusne & Rampi Ramprasad. 2016. Reviews in Computational Chemistry. Reviews in Computational Chemistry 186 273 .
Álvar Arnaiz-González, Asier Fernández-Valdivielso, Andres Bustillo & Luis Norberto López de Lacalle. (2015) Using artificial neural networks for the prediction of dimensional error on inclined surfaces manufactured by ball-end milling. The International Journal of Advanced Manufacturing Technology 83:5-8, pages 847-859.
Crossref
Ferozkhan Safiyullah, Shaharin Anwar Sulaiman, Nordin Zakaria, Mohd Shahrizal Jasmani & Syed Muhammad Afdhal Ghazali. (2016) Modeling the Isentropic Head Value of Centrifugal Gas Compressor using Genetic Programming. MATEC Web of Conferences 38, pages 01001.
Crossref
Akhil Garg & Kang Tai. (2015) Evolving genetic programming models of higher generalization ability in modelling of turning process. Engineering Computations 32:8, pages 2216-2234.
Crossref
G. Mahesh, S. Muthu & S. R. Devadasan. (2014) Prediction of surface roughness of end milling operation using genetic algorithm. The International Journal of Advanced Manufacturing Technology 77:1-4, pages 369-381.
Crossref
F. Ancio, A.J. Gámez & M. Marcos. (2015) Factors influencing the generation of a machined surface. Application to turned pieces. Journal of Materials Processing Technology 215, pages 50-61.
Crossref
Maciej Grzenda & Andres Bustillo. (2013) The evolutionary development of roughness prediction models. Applied Soft Computing 13:5, pages 2913-2922.
Crossref
C. Becker, G. Quintana, M. Hermes, B. Cavallini & A. E. Tekkaya. (2012) Prediction of surface roughness due to spinning in the incremental tube forming process. Production Engineering 7:2-3, pages 153-166.
Crossref
Ramezan Ali Mahdavinejad, Navid Khani & Mir Masoud Seyyed Fakhrabadi. (2013) Optimization of milling parameters using artificial neural network and artificial immune system. Journal of Mechanical Science and Technology 26:12, pages 4097-4104.
Crossref
M. Bozdemir & Ş. Aykut. (2011) Optimization of surface roughness in end milling Castamide. The International Journal of Advanced Manufacturing Technology 62:5-8, pages 495-503.
Crossref
Long Wen, Liang Gao & Liping Zhang. (2012) Modeling the performance of electrochemical machining process using free pattern search. Modeling the performance of electrochemical machining process using free pattern search.
José-Francisco Díez-Pastor, Andres Bustillo, Guillem Quintana & César García-Osorio. (2012) Boosting Projections to improve surface roughness prediction in high-torque milling operations. Soft Computing 16:8, pages 1427-1437.
Crossref
Long Wen, Liang Gao, Xinyu Li, Yang Yang & Guohui Zhang. (2012) Application of Free Pattern Search on the surface roughness prediction in end milling. Application of Free Pattern Search on the surface roughness prediction in end milling.
Guillem Quintana, Thomas Rudolf, Joaquim Ciurana & Christian Brecher. (2011) Using kernel data in machine tools for the indirect evaluation of surface roughness in vertical milling operations. Robotics and Computer-Integrated Manufacturing 27:6, pages 1011-1018.
Crossref
Amir Hossein Gandomi & Amir Hossein Alavi. (2011) Multi-stage genetic programming: A new strategy to nonlinear system modeling. Information Sciences 181:23, pages 5227-5239.
Crossref
Guillem Quintana, Thomas Rudolf, Joaquim Ciurana & Christian Brecher. (2011) Surface roughness prediction through internal kernel information and external accelerometers using artificial neural networks. Journal of Mechanical Science and Technology 25:11, pages 2877-2886.
Crossref
Andres Bustillo, José-Francisco Díez-Pastor, Guillem Quintana & César García-Osorio. (2011) Avoiding neural network fine tuning by using ensemble learning: application to ball-end milling operations. The International Journal of Advanced Manufacturing Technology 57:5-8, pages 521-532.
Crossref
G. Quintana, M. L. Garcia-Romeu & J. Ciurana. (2009) Surface roughness monitoring application based on artificial neural networks for ball-end milling operations. Journal of Intelligent Manufacturing 22:4, pages 607-617.
Crossref
Şeref Aykut, Mustafa Demetgul & Ibrahim N. Tansel. (2009) Selection of optimum cutting condition of cobalt-based superalloy with GONNS. The International Journal of Advanced Manufacturing Technology 46:9-12, pages 957-967.
Crossref
Xiaoh Wang. (2009) Intelligent Modeling and Predicting Surface Roughness in End Milling. Intelligent Modeling and Predicting Surface Roughness in End Milling.
Wen-Hsien Ho, Jinn-Tsong Tsai, Bor-Tsuen Lin & Jyh-Horng Chou. (2009) Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm. Expert Systems with Applications 36:2, pages 3216-3222.
Crossref
Deh Wu. (2008) Surface Hardness Intelligent Prediction in Milling Using Support Vector Regression. Surface Hardness Intelligent Prediction in Milling Using Support Vector Regression.
V G Dhokia, S Kumar, P Vichare, S T Newman & R D Allen. (2008) Surface roughness prediction model for CNC machining of polypropylene. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 222:2, pages 137-157.
Crossref
Joze Balic, Miha Kovacic & Bostjan Vaupotic. (2006) Intelligent Programming of CNC Turning Operations using Genetic Algorithm. Journal of Intelligent Manufacturing 17:3, pages 331-340.
Crossref
I.N. Tansel, B. Ozcelik, W.Y. Bao, P. Chen, D. Rincon, S.Y. Yang & A. Yenilmez. (2006) Selection of optimal cutting conditions by using GONNS. International Journal of Machine Tools and Manufacture 46:1, pages 26-35.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.