23
Views
54
CrossRef citations to date
0
Altmetric
Article

Thio Modification of Yeast Cytosolic tRNA Is an Iron-Sulfur Protein-Dependent Pathway

, , , &
Pages 2841-2847 | Received 18 Jul 2006, Accepted 22 Jan 2007, Published online: 27 Mar 2023

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (2)

Raffael Schaffrath & Sebastian A. Leidel. (2017) Wobble uridine modifications–a reason to live, a reason to die?!. RNA Biology 14:9, pages 1209-1222.
Read now
Tony Karlsborn, Hasan Tükenmez, A K M Firoj Mahmud, Fu Xu, Hao Xu & Anders S Byström. (2014) Elongator, a conserved complex required for wobble uridine modifications in Eukaryotes. RNA Biology 11:12, pages 1519-1528.
Read now

Articles from other publishers (52)

Anja Wagner & Markus Schosserer. (2022) The epitranscriptome in ageing and stress resistance: A systematic review. Ageing Research Reviews 81, pages 101700.
Crossref
Tamaki Suganuma. (2022) Beyond Moco Biosynthesis―Moonlighting Roles of MoaE and MOCS2. Molecules 27:12, pages 3733.
Crossref
Béatrice Golinelli-Pimpaneau. (2021) Prediction of the Iron–Sulfur Binding Sites in Proteins Using the Highly Accurate Three-Dimensional Models Calculated by AlphaFold and RoseTTAFold. Inorganics 10:1, pages 2.
Crossref
Ya Ying Zheng, Ying Wu, Thomas J. Begley & Jia Sheng. (2021) Sulfur modification in natural RNA and therapeutic oligonucleotides. RSC Chemical Biology 2:4, pages 990-1003.
Crossref
Martin Termathe & Sebastian A. Leidel. (2021) Urm1: A Non-Canonical UBL. Biomolecules 11:2, pages 139.
Crossref
Joseph J. Braymer, Sven A. Freibert, Magdalena Rakwalska-Bange & Roland Lill. (2021) Mechanistic concepts of iron-sulfur protein biogenesis in Biology. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1868:1, pages 118863.
Crossref
Ritu Gupta & Sunil Laxman. (2019) tRNA wobble-uridine modifications as amino acid sensors and regulators of cellular metabolic state. Current Genetics 66:3, pages 475-480.
Crossref
Roland Lill. (2020) From the discovery to molecular understanding of cellular iron-sulfur protein biogenesis. Biological Chemistry 401:6-7, pages 855-876.
Crossref
Harmen Hawer, Alexander Hammermeister, Keerthiraju Ravichandran, Sebastian Glatt, Raffael Schaffrath & Roland Klassen. (2018) Roles of Elongator Dependent tRNA Modification Pathways in Neurodegeneration and Cancer. Genes 10:1, pages 19.
Crossref
Naoki Shigi. (2018) Recent Advances in Our Understanding of the Biosynthesis of Sulfur Modifications in tRNAs. Frontiers in Microbiology 9.
Crossref
Joseph J. Braymer & Dennis R. Winge. (2018) Sulfur from Within: Cytosolic tRNA Thiouridinylation. Cell Chemical Biology 25:6, pages 645-647.
Crossref
Alok Pandey, Jayashree Pain, Nathaniel Dziuba, Ashutosh K. Pandey, Andrew Dancis, Paul A. Lindahl & Debkumar Pain. (2018) Mitochondria Export Sulfur Species Required for Cytosolic tRNA Thiolation. Cell Chemical Biology 25:6, pages 738-748.e3.
Crossref
Marcus J.O. Johansson, Fu Xu & Anders S. Byström. (2018) Elongator—a tRNA modifying complex that promotes efficient translational decoding. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1861:4, pages 401-408.
Crossref
Martin Bühning, Martin Friemel & Silke Leimkühler. (2017) Functional Complementation Studies Reveal Different Interaction Partners of Escherichia coli IscS and Human NFS1 . Biochemistry 56:34, pages 4592-4605.
Crossref
Minghao ChenShin-ichi AsaiShun NaraiShusuke NambuNaoki OmuraYuriko SakaguchiTsutomu SuzukiMasao Ikeda-SaitoKimitsuna WatanabeMin YaoNaoki ShigiYoshikazu Tanaka. (2017) Biochemical and structural characterization of oxygen-sensitive 2-thiouridine synthesis catalyzed by an iron-sulfur protein TtuA. Proceedings of the National Academy of Sciences 114:19, pages 4954-4959.
Crossref
Martin Friemel, Zvonimir Marelja, Kuanyu Li & Silke Leimkühler. (2017) The N-Terminus of Iron–Sulfur Cluster Assembly Factor ISD11 Is Crucial for Subcellular Targeting and Interaction with l -Cysteine Desulfurase NFS1 . Biochemistry 56:12, pages 1797-1808.
Crossref
Mirela Čavužić & Yuchen Liu. (2017) Biosynthesis of Sulfur-Containing tRNA Modifications: A Comparison of Bacterial, Archaeal, and Eukaryotic Pathways. Biomolecules 7:4, pages 27.
Crossref
Yumi Nakai, Masato Nakai & Takato Yano. (2017) Sulfur Modifications of the Wobble U34 in tRNAs and their Intracellular Localization in Eukaryotic Cells. Biomolecules 7:4, pages 17.
Crossref
Prasenjit Prasad Saha, Vinaya Vishwanathan, Kondalarao Bankapalli & Patrick D’Silva. 2018. Reviews of Physiology, Biochemistry and Pharmacology Vol. 174. Reviews of Physiology, Biochemistry and Pharmacology Vol. 174 25 65 .
Yuchen LiuDavid J. VinyardMegan E. ReesbeckTateki Suzuki, Kasidet Manakongtreecheep, Patrick L. HollandGary W. Brudvig & Dieter Söll. (2016) A [3Fe-4S] cluster is required for tRNA thiolation in archaea and eukaryotes. Proceedings of the National Academy of Sciences 113:45, pages 12703-12708.
Crossref
Naoki Shigi. 2016. Modified Nucleic Acids in Biology and Medicine. Modified Nucleic Acids in Biology and Medicine 55 71 .
Eva Horáková, Piya Changmai, Zdeněk Paris, Didier Salmon & Julius Lukeš. (2015) Simultaneous depletion of Atm and Mdl rebalances cytosolic Fe-S cluster assembly but not heme import into the mitochondrion of Trypanosoma brucei . FEBS Journal 282:21, pages 4157-4175.
Crossref
Roland Lill, Rafal Dutkiewicz, Sven A. Freibert, Torsten Heidenreich, Judita Mascarenhas, Daili J. Netz, Viktoria D. Paul, Antonio J. Pierik, Nadine Richter, Martin Stümpfig, Vasundara Srinivasan, Oliver Stehling & Ulrich Mühlenhoff. (2015) The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron–sulfur proteins. European Journal of Cell Biology 94:7-9, pages 280-291.
Crossref
Julius Lukeš & Somsuvro Basu. (2015) Fe/S protein biogenesis in trypanosomes — A review. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1853:6, pages 1481-1492.
Crossref
Aneta Kaniak-Golik & Adrianna Skoneczna. (2015) Mitochondria–nucleus network for genome stability. Free Radical Biology and Medicine 82, pages 73-104.
Crossref
David C. Montgomery, Alexander W. Sorum & Jordan L. Meier. (2015) Defining the Orphan Functions of Lysine Acetyltransferases. ACS Chemical Biology 10:1, pages 85-94.
Crossref
Tracey A. Rouault. (2014) Mammalian iron–sulphur proteins: novel insights into biogenesis and function. Nature Reviews Molecular Cell Biology 16:1, pages 45-55.
Crossref
Benjamin Fräsdorf, Christin Radon & Silke Leimkühler. (2014) Characterization and Interaction Studies of Two Isoforms of the Dual Localized 3-Mercaptopyruvate Sulfurtransferase TUM1 from Humans. Journal of Biological Chemistry 289:50, pages 34543-34556.
Crossref
Roland Lill, Vasundara Srinivasan & Ulrich Mühlenhoff. (2014) The role of mitochondria in cytosolic-nuclear iron–sulfur protein biogenesis and in cellular iron regulation. Current Opinion in Microbiology 22, pages 111-119.
Crossref
Somsuvro Basu, Daili J. Netz, Alexander C. Haindrich, Nils Herlerth, Thibaut J. Lagny, Antonio J. Pierik, Roland Lill & Julius Lukeš. (2014) Cytosolic iron-sulphur protein assembly is functionally conserved and essential in procyclic and bloodstream T rypanosoma brucei . Molecular Microbiology 93:5, pages 897-910.
Crossref
Naoki Shigi. (2014) Biosynthesis and functions of sulfur modifications in tRNA. Frontiers in Genetics 5.
Crossref
Julie Kovářová, Eva Horáková, Piya Changmai, Marie Vancová & Julius Lukeš. (2014) Mitochondrial and Nucleolar Localization of Cysteine Desulfurase Nfs and the Scaffold Protein Isu in Trypanosoma brucei. Eukaryotic Cell 13:3, pages 353-362.
Crossref
Anita K Hopper. (2013) Transfer RNA Post-Transcriptional Processing, Turnover, and Subcellular Dynamics in the Yeast Saccharomyces cerevisiae . Genetics 194:1, pages 43-67.
Crossref
Zvonimir Marelja, Mita Mullick Chowdhury, Carsten Dosche, Carsten Hille, Otto Baumann, Hans-Gerd Löhmannsröben & Silke Leimkühler. (2013) The L-Cysteine Desulfurase NFS1 Is Localized in the Cytosol where it Provides the Sulfur for Molybdenum Cofactor Biosynthesis in Humans. PLoS ONE 8:4, pages e60869.
Crossref
Vahab Ali & Tomoyoshi Nozaki. 2013. 1 92 .
Yumi Nakai, Akiko Harada, Yasuyuki Hashiguchi, Masato Nakai & Hideyuki Hayashi. (2012) Arabidopsis Molybdopterin Biosynthesis Protein Cnx5 Collaborates with the Ubiquitin-like Protein Urm11 in the Thio-modification of tRNA. Journal of Biological Chemistry 287:36, pages 30874-30884.
Crossref
Mita Mullick Chowdhury, Carsten Dosche, Hans-Gerd Löhmannsröben & Silke Leimkühler. (2012) Dual Role of the Molybdenum Cofactor Biosynthesis Protein MOCS3 in tRNA Thiolation and Molybdenum Cofactor Biosynthesis in Humans. Journal of Biological Chemistry 287:21, pages 17297-17307.
Crossref
Ryota Hidese, Hisaaki Mihara & Nobuyoshi Esaki. (2011) Bacterial cysteine desulfurases: versatile key players in biosynthetic pathways of sulfur-containing biofactors. Applied Microbiology and Biotechnology 91:1, pages 47-61.
Crossref
Eric M. Phizicky & Anita K. Hopper. (2010) tRNA biology charges to the front. Genes & Development 24:17, pages 1832-1860.
Crossref
Zdeněk Paris, Piya Changmai, Mary Anne T. Rubio, Alena Zíková, Kenneth D. Stuart, Juan D. Alfonzo & Julius Lukeš. (2010) The Fe/S Cluster Assembly Protein Isd11 Is Essential for tRNA Thiolation in Trypanosoma brucei. Journal of Biological Chemistry 285:29, pages 22394-22402.
Crossref
Pavel Poliak, Douglas Van Hoewyk, Miroslav Oborník, Alena Zíková, Kenneth D. Stuart, Jan Tachezy, Marinus Pilon & Julius Lukeš. (2010) Functions and cellular localization of cysteine desulfurase and selenocysteine lyase in Trypanosoma brucei. FEBS Journal 277:2, pages 383-393.
Crossref
Ellen Inga Bruske, Franziska Sendfeld & André Schneider. (2009) Thiolated tRNAs of Trypanosoma brucei Are Imported into Mitochondria and Dethiolated after Import. Journal of Biological Chemistry 284:52, pages 36491-36499.
Crossref
Adi Naamati, Neta Regev-Rudzki, Shlomi Galperin, Roland Lill & Ophry Pines. (2009) Dual Targeting of Nfs1 and Discovery of Its Novel Processing Enzyme, Icp55. Journal of Biological Chemistry 284:44, pages 30200-30208.
Crossref
Roland Lill. (2009) Function and biogenesis of iron–sulphur proteins. Nature 460:7257, pages 831-838.
Crossref
Akiko Noma, Yuriko Sakaguchi & Tsutomu Suzuki. (2009) Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions. Nucleic Acids Research 37:4, pages 1335-1352.
Crossref
Hirokazu Kohbushi, Yumi Nakai, Shingo Kikuchi, Toshiki Yabe, Hiroshi Hori & Masato Nakai. (2009) Arabidopsis cytosolic Nbp35 homodimer can assemble both [2Fe–2S] and [4Fe–4S] clusters in two distinct domains. Biochemical and Biophysical Research Communications 378:4, pages 810-815.
Crossref
Naoki Shigi, Yuriko Sakaguchi, Shin-ichi Asai, Tsutomu Suzuki & Kimitsuna Watanabe. (2008) Common thiolation mechanism in the biosynthesis of tRNA thiouridine and sulphur-containing cofactors. The EMBO Journal 27:24, pages 3267-3278.
Crossref
Bo Huang, Jian Lu & Anders S. Byström. (2008) A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae . RNA 14:10, pages 2183-2194.
Crossref
Yumi Nakai, Masato Nakai & Hideyuki Hayashi. (2008) Thio-modification of Yeast Cytosolic tRNA Requires a Ubiquitin-related System That Resembles Bacterial Sulfur Transfer Systems. Journal of Biological Chemistry 283:41, pages 27469-27476.
Crossref
Zvonimir Marelja, Walter Stöcklein, Manfred Nimtz & Silke Leimkühler. (2008) A Novel Role for Human Nfs1 in the Cytoplasm. Journal of Biological Chemistry 283:37, pages 25178-25185.
Crossref
Roland LillUlrich Mühlenhoff. (2008) Maturation of Iron-Sulfur Proteins in Eukaryotes: Mechanisms, Connected Processes, and Diseases. Annual Review of Biochemistry 77:1, pages 669-700.
Crossref
. (2007) Current awareness on yeast. Yeast 24:12, pages 1085-1092.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.