22
Views
73
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

RAD51 Is Required for the Repair of Plasmid Double-Stranded DNA Gaps from Either Plasmid or Chromosomal Templates

, &
Pages 1194-1205 | Received 10 Jun 1999, Accepted 19 Nov 1999, Published online: 28 Mar 2023

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (11)

Genrikh S. Ritter, Valeriy P. Nikolin, Nelly A. Popova, Anastasia S. Proskurina, Polina E. Kisaretova, Oleg S. Taranov, Tatiana D. Dubatolova, Evgenia V. Dolgova, Ekaterina A. Potter, Svetlana S. Kirikovich, Yaroslav R. Efremov, Sergey I. Bayborodin, Margarita V. Romanenko, Maria I. Meschaninova, Aliya G. Venyaminova, Nikolay A. Kolchanov, Mikhail A. Shurdov & Sergey S. Bogachev. (2020) Characterization of biological peculiarities of the radioprotective activity of double-stranded RNA isolated from Saccharomyces сerevisiae. International Journal of Radiation Biology 96:9, pages 1173-1191.
Read now
Catherine E. Smith, Alicia F. Lam & Lorraine S. Symington. (2009) Aberrant Double-Strand Break Repair Resulting in Half Crossovers in Mutants Defective for Rad51 or the DNA Polymerase δ Complex. Molecular and Cellular Biology 29:6, pages 1432-1441.
Read now
Thomas J. Pohl & Jac A. Nickoloff. (2008) Rad51-Independent Interchromosomal Double-Strand Break Repair by Gene Conversion Requires Rad52 but Not Rad55, Rad57, or Dmc1. Molecular and Cellular Biology 28:3, pages 897-906.
Read now
Kristina Herzberg, Vladimir I. Bashkirov, Michael Rolfsmeier, Edwin Haghnazari, W. Hayes McDonald, Scott Anderson, Elena V. Bashkirova, John R. Yates$suffix/text()$suffix/text() & Wolf-Dietrich Heyer. (2006) Phosphorylation of Rad55 on Serines 2, 8, and 14 Is Required for Efficient Homologous Recombination in the Recovery of Stalled Replication Forks. Molecular and Cellular Biology 26:22, pages 8396-8409.
Read now
Bertrand Llorente & Lorraine S. Symington. (2004) The Mre11 Nuclease Is Not Required for 5′ to 3′ Resection at Multiple HO-Induced Double-Strand Breaks. Molecular and Cellular Biology 24:21, pages 9682-9694.
Read now
Allison P. Davis & Lorraine S. Symington. (2004) RAD51-Dependent Break-Induced Replication in Yeast. Molecular and Cellular Biology 24:6, pages 2344-2351.
Read now
Grzegorz Ira & James E. Haber. (2002) Characterization of RAD51-Independent Break-Induced Replication That Acts Preferentially with Short Homologous Sequences. Molecular and Cellular Biology 22:18, pages 6384-6392.
Read now
Elizabeth A. Morgan, Naseem Shah & Lorraine S. Symington. (2002) The Requirement for ATP Hydrolysis by Saccharomyces cerevisiae Rad51 Is Bypassed by Mating-Type Heterozygosity or RAD54 in High Copy. Molecular and Cellular Biology 22:18, pages 6336-6343.
Read now
Laurence Signon, Anna Malkova, Maria L. Naylor, Hannah Klein & James E. Haber. (2001) Genetic Requirements for RAD51- andRAD54-Independent Break-Induced Replication Repair of a Chromosomal Double-Strand Break. Molecular and Cellular Biology 21:6, pages 2048-2056.
Read now
Leslie E. Kang & Lorraine S. Symington. (2000) Aberrant Double-Strand Break Repair in rad51 Mutants of Saccharomyces cerevisiae. Molecular and Cellular Biology 20:24, pages 9162-9172.
Read now
Neal Sugawara, Grzegorz Ira & James E. Haber. (2000) DNA Length Dependence of the Single-Strand Annealing Pathway and the Role of Saccharomyces cerevisiae RAD59 in Double-Strand Break Repair. Molecular and Cellular Biology 20:14, pages 5300-5309.
Read now

Articles from other publishers (62)

Sergio R. Santa MariaDiana B. MarinaSofia Massaro TiezeLauren C. LiddellSharmila Bhattacharya. (2023) BioSentinel: Long-Term Saccharomyces cerevisiae Preservation for a Deep Space Biosensor Mission . Astrobiology 23:6, pages 617-630.
Crossref
G. S. Ritter, V. P. Nikolin, N. A. Popova, A. S. Proskurina, P. E. Kisaretova, O. S. Taranov, T. D. Dubatolova, E. V. Dolgova, E. A. Potter, S. S. Kirikovich, Y. R. Efremov, S. I. Bayborodin, M. V. Romanenko, M. I. Meschaninova, A. G. Venyaminova, N. A. Kolchanov & S. S. Bogachev. (2020) Characteristic of the active substance of the Saccharomyces cerevisiae preparation having radioprotective properties. Vavilov Journal of Genetics and Breeding 24:6, pages 643-652.
Crossref
Neda Z. Ghanem, Shubha R.L. Malla, Naoko Araki & L. Kevin Lewis. (2019) Quantitative assessment of changes in cell growth, size and morphology during telomere-initiated cellular senescence in Saccharomyces cerevisiae. Experimental Cell Research 381:1, pages 18-28.
Crossref
Alberto Bellido, Belén Hermosa, Toni Ciudad & Germán Larriba. (2018) Role of homologous recombination genes RAD51 , RAD52 , and RAD59 in the repair of lesions caused by γ-radiation to cycling and G2/M-arrested cells of Candida albicans . Cellular Microbiology 20:12, pages e12950.
Crossref
Toni Ciudad, Alberto Bellido, Encarnación Andaluz, Belén Hermosa & Germán Larriba. (2018) Role of Homologous Recombination Genes in Repair of Alkylation Base Damage by Candida albicans. Genes 9:9, pages 447.
Crossref
Sandra Muñoz-Galván, María García-Rubio, Pedro Ortega, Jose F. Ruiz, Sonia Jimeno, Benjamin Pardo, Belén Gómez-González & Andrés Aguilera. (2017) A new role for Rrm3 in repair of replication-born DNA breakage by sister chromatid recombination. PLOS Genetics 13:5, pages e1006781.
Crossref
Sonia Silva, Veronika Altmannova, Sarah Luke-Glaser, Peter Henriksen, Irene Gallina, Xuejiao Yang, Chunaram Choudhary, Brian Luke, Lumir Krejci & Michael Lisby. (2016) Mte1 interacts with Mph1 and promotes crossover recombination and telomere maintenance. Genes & Development 30:6, pages 700-717.
Crossref
Melina Mardirosian, Linette Nalbandyan, Aaron D. Miller, Claire Phan, Eric P. Kelson & Paula L. Fischhaber. (2015) Saw1 localizes to repair sites but is not required for recruitment of Rad10 to repair intermediates bearing short non-homologous 3′ flaps during single-strand annealing in S. cerevisiae. Molecular and Cellular Biochemistry 412:1-2, pages 131-139.
Crossref
Rachid Menouni, Geoffrey Hutinet, Marie-Agnès Petit & Mireille Ansaldi. (2015) Bacterial genome remodeling through bacteriophage recombination. FEMS Microbiology Letters 362:1, pages 1-10.
Crossref
Lorraine S Symington, Rodney Rothstein & Michael Lisby. (2014) Mechanisms and Regulation of Mitotic Recombination in Saccharomyces cerevisiae . Genetics 198:3, pages 795-835.
Crossref
Anamarija Štafa, Marina Miklenić, Bojan Žunar, Berislav Lisnić, Lorraine S. Symington & Ivan-Krešimir Svetec. (2014) Sgs1 and Exo1 suppress targeted chromosome duplication during ends-in and ends-out gene targeting. DNA Repair 22, pages 12-23.
Crossref
Irina Sizova, Andre Greiner, Mayanka Awasthi, Suneel Kateriya & Peter Hegemann. (2013) Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases . The Plant Journal 73:5, pages 873-882.
Crossref
Peter Burkovics, Marek Sebesta, Alexandra Sisakova, Nicolas Plault, Valeria Szukacsov, Thomas Robert, Lajos Pinter, Victoria Marini, Peter Kolesar, Lajos Haracska, Serge Gangloff & Lumir Krejci. (2013) Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis. The EMBO Journal 32:5, pages 742-755.
Crossref
Kuntal Mukherjee & Francesca Storici. (2012) A Mechanism of Gene Amplification Driven by Small DNA Fragments. PLoS Genetics 8:12, pages e1003119.
Crossref
Gerard Mazón, Alicia F Lam, Chu Kwen Ho, Martin Kupiec & Lorraine S Symington. (2012) The Rad1-Rad10 nuclease promotes chromosome translocations between dispersed repeats. Nature Structural & Molecular Biology 19:9, pages 964-971.
Crossref
Thomas Costelloe, Raphaël Louge, Nozomi Tomimatsu, Bipasha Mukherjee, Emmanuelle Martini, Basheer Khadaroo, Kenny Dubois, Wouter W. Wiegant, Agnès Thierry, Sandeep Burma, Haico van Attikum & Bertrand Llorente. (2012) The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Nature 489:7417, pages 581-584.
Crossref
Miki Ii, Tatsuya Ii, Larisa I. Mironova & Steven J. Brill. (2011) Epistasis analysis between homologous recombination genes in Saccharomyces cerevisiae identifies multiple repair pathways for Sgs1, Mus81-Mms4 and RNase H2. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 714:1-2, pages 33-43.
Crossref
Lillian Doerfler, Lorena Harris, Emilie Viebranz & Kristina H Schmidt. (2011) Differential genetic interactions between Sgs1, DNA-damage checkpoint components and DNA repair factors in the maintenance of chromosome stability. Genome Integrity 2:1, pages 8.
Crossref
Nathan Pirakitikulr, Nili Ostrov, Pamela Peralta-Yahya & Virginia W. Cornish. (2010) PCRless library mutagenesis via oligonucleotide recombination in yeast. Protein Science 19:12, pages 2336-2346.
Crossref
Vanessa A. Marrero & Lorraine S. Symington. (2010) Extensive DNA End Processing by Exo1 and Sgs1 Inhibits Break-Induced Replication. PLoS Genetics 6:7, pages e1001007.
Crossref
D.G. Schaefer, F. Delacote, F. Charlot, N. Vrielynck, A. Guyon-Debast, S. Le Guin, J.M. Neuhaus, M.P. Doutriaux & F. Nogué. (2010) RAD51 loss of function abolishes gene targeting and de-represses illegitimate integration in the moss Physcomitrella patens. DNA Repair 9:5, pages 526-533.
Crossref
Ye Dee Tay, Julie M. Sidebotham & Leonard Wu. (2010) Mph1 requires mismatch repair-independent and -dependent functions of MutSα to regulate crossover formation during homologous recombination repair. Nucleic Acids Research 38:6, pages 1889-1901.
Crossref
Helen Tinline-Purvis, Andrew P Savory, Jason K Cullen, Anoushka Davé, Jennifer Moss, Wendy L Bridge, Samuel Marguerat, Jürg Bähler, Jiannis Ragoussis, Richard Mott, Carol A Walker & Timothy C Humphrey. (2009) Failed gene conversion leads to extensive end processing and chromosomal rearrangements in fission yeast. The EMBO Journal 28:21, pages 3400-3412.
Crossref
Shinji Yasuhira. (2009) Redundant roles of Srs2 helicase and replication checkpoint in survival and rDNA maintenance in Schizosaccharomyces pombe. Molecular Genetics and Genomics 281:5, pages 497-509.
Crossref
Brandon Downing, Rachel Morgan, Kelly VanHulle, Angela Deem & Anna Malkova. (2008) Large inverted repeats in the vicinity of a single double-strand break strongly affect repair in yeast diploids lacking Rad51. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 645:1-2, pages 9-18.
Crossref
Alicia F. Lam, Berit O. Krogh & Lorraine S. Symington. (2008) Unique and overlapping functions of the Exo1, Mre11 and Pso2 nucleases in DNA repair. DNA Repair 7:4, pages 655-662.
Crossref
Amy M Mozlin, Cindy W Fung & Lorraine S Symington. (2008) Role of the Saccharomyces cerevisiae Rad51 Paralogs in Sister Chromatid Recombination . Genetics 178:1, pages 113-126.
Crossref
Gustavo Santoyo & Jeffrey N. Strathern. (2008) Non-homologous end joining is important for repair of Cr(VI)-induced DNA damage in Saccharomyces cerevisiae. Microbiological Research 163:1, pages 113-119.
Crossref
Melissa S McMahill, Caroline W Sham & Douglas K Bishop. (2007) Synthesis-Dependent Strand Annealing in Meiosis. PLoS Biology 5:11, pages e299.
Crossref
James E. Haber. 2007. Mobile DNA II. Mobile DNA II 925 952 .
Catherine E. Smith, Bertrand Llorente & Lorraine S. Symington. (2007) Template switching during break-induced replication. Nature 447:7140, pages 102-105.
Crossref
Fumiko Tanaka, Akira Ando, Toshihide Nakamura, Hiroshi Takagi & Jun Shima. (2006) Functional genomic analysis of commercial baker's yeast during initial stages of model dough-fermentation. Food Microbiology 23:8, pages 717-728.
Crossref
Wolf-Dietrich Heyer, Xuan Li, Michael Rolfsmeier & Xiao-Ping Zhang. (2006) Rad54: the Swiss Army knife of homologous recombination?. Nucleic Acids Research 34:15, pages 4115-4125.
Crossref
Yun Wu, Tomohiko Sugiyama & Stephen C. Kowalczykowski. (2006) DNA Annealing Mediated by Rad52 and Rad59 Proteins. Journal of Biological Chemistry 281:22, pages 15441-15449.
Crossref
Errol C. Friedberg, Graham C. Walker, Wolfram Siede, Richard D. Wood, Roger A. Schultz & Tom Ellenberger. 2005. DNA Repair and Mutagenesis. DNA Repair and Mutagenesis 663 710 .
Michael Fasullo, Zheng Dong, Mingzeng Sun & Li Zeng. (2005) Saccharomyces cerevisiae RAD53 (CHK2) but not CHK1 is required for double-strand break-initiated SCE and DNA damage-associated SCE after exposure to X rays and chemical agents. DNA Repair 4:11, pages 1240-1251.
Crossref
L. K. Lewis, G. Karthikeyan, J. Cassiano & M. A. Resnick. (2005) Reduction of nucleosome assembly during new DNA synthesis impairs both major pathways of double-strand break repair. Nucleic Acids Research 33:15, pages 4928-4939.
Crossref
Lance D Langston & Lorraine S Symington. (2005) Opposing roles for DNA structure-specific proteins Rad1, Msh2, Msh3, and Sgs1 in yeast gene targeting. The EMBO Journal 24:12, pages 2214-2223.
Crossref
Berit Olsen KroghLorraine S. Symington. (2004) Recombination Proteins in Yeast. Annual Review of Genetics 38:1, pages 233-271.
Crossref
Lance D. Langston & Lorraine S. Symington. (2004) Gene targeting in yeast is initiated by two independent strand invasions. Proceedings of the National Academy of Sciences 101:43, pages 15392-15397.
Crossref
Felipe Cortés-Ledesma, Francisco Malagón & Andrés Aguilera. (2004) A Novel Yeast Mutation, rad52-L89F, Causes a Specific Defect in Rad51-Independent Recombination That Correlates With a Reduced Ability of Rad52-L89F to Interact With Rad59. Genetics 168:1, pages 553-557.
Crossref
K. Gjuracic, E. Pivetta & C. V. Bruschi. (2004) Targeted DNA integration within different functional gene domains in yeast reveals ORF sequences as recombinational cold-spots. Molecular Genetics and Genomics 271:4, pages 437-446.
Crossref
Rachelle Miller Spell & Sue Jinks-Robertson. (2003) Role of Mismatch Repair in the Fidelity of RAD51 - and RAD59 -Dependent Recombination in Saccharomyces cerevisiae . Genetics 165:4, pages 1733-1744.
Crossref
Sergio González-Barrera, Felipe Cortés-Ledesma, Ralf E Wellinger & Andrés Aguilera. (2003) Equal Sister Chromatid Exchange Is a Major Mechanism of Double-Strand Break Repair in Yeast. Molecular Cell 11:6, pages 1661-1671.
Crossref
Lorraine S. Symington. (2002) Role of RAD52 Epistasis Group Genes in Homologous Recombination and Double-Strand Break Repair . Microbiology and Molecular Biology Reviews 66:4, pages 630-670.
Crossref
Caroline Welz-Voegele, Jana E Stone, Phuoc T Tran, Hutton M Kearney, R Michael Liskay, Thomas D Petes & Sue Jinks-Robertson. (2002) Alleles of the Yeast PMS1 Mismatch-Repair Gene That Differentially Affect Recombination- and Replication-Related Processes . Genetics 162:3, pages 1131-1145.
Crossref
Marie Frank-Vaillant & Stéphane Marcand. (2002) Transient Stability of DNA Ends Allows Nonhomologous End Joining to Precede Homologous Recombination. Molecular Cell 10:5, pages 1189-1199.
Crossref
Sergio González-Barrera, María García-Rubio & Andrés Aguilera. (2002) Transcription and Double-Strand Breaks Induce Similar Mitotic Recombination Events in Saccharomyces cerevisiae . Genetics 162:2, pages 603-614.
Crossref
Jennifer A Freedman & Sue Jinks-Robertson. (2002) Genetic Requirements for Spontaneous and Transcription-Stimulated Mitotic Recombination in Saccharomyces cerevisiae . Genetics 162:1, pages 15-27.
Crossref
Damien D'Amours & Stephen P. Jackson. (2002) The MRE11 complex: at the crossroads of DNA repair and checkpoint signalling. Nature Reviews Molecular Cell Biology 3:5, pages 317-327.
Crossref
Michael van den Bosch, Paul H.M. Lohman & Albert Pastink. (2002) DNA Double-Strand Break Repair by Homologous Recombination. Biological Chemistry 383:6.
Crossref
Sylvie Moreau, Elizabeth A Morgan & Lorraine S Symington. (2001) Overlapping Functions of the Saccharomyces cerevisiae Mre11, Exo1 and Rad27 Nucleases in DNA Metabolism . Genetics 159:4, pages 1423-1433.
Crossref
Craig B. Bennett, L. Kevin Lewis, Gopalakrishnan Karthikeyan, Kirill S. Lobachev, Yong H. Jin, Joan F. Sterling, Joyce R. Snipe & Michael A. Resnick. (2001) Genes required for ionizing radiation resistance in yeast. Nature Genetics 29:4, pages 426-434.
Crossref
Allison P Davis & Lorraine S Symington. (2001) The Yeast Recombinational Repair Protein Rad59 Interacts With Rad52 and Stimulates Single-Strand Annealing. Genetics 159:2, pages 515-525.
Crossref
Wataru Kagawa, Hitoshi Kurumizaka, Shukuko Ikawa, Shigeyuki Yokoyama & Takehiko Shibata. (2001) Homologous Pairing Promoted by the Human Rad52 Protein. Journal of Biological Chemistry 276:37, pages 35201-35208.
Crossref
Eiichiro Sonoda, Minoru Takata, Yukiko M. Yamashita, Ciaran Morrison & Shunichi Takeda. (2001) Homologous DNA recombination in vertebrate cells. Proceedings of the National Academy of Sciences 98:15, pages 8388-8394.
Crossref
Michael Fasullo, Peter Giallanza, Zheng Dong, Cinzia Cera & Thomas Bennett. (2001) Saccharomyces cerevisiae rad51 Mutants Are Defective in DNA Damage-Associated Sister Chromatid Exchanges but Exhibit Increased Rates of Homology-Directed Translocations . Genetics 158:3, pages 959-972.
Crossref
Francisco Malagón & Andrés Aguilera. (2001) Yeast spt6-140 Mutation, Affecting Chromatin and Transcription, Preferentially Increases Recombination in Which Rad51p-Mediated Strand Exchange Is Dispensable . Genetics 158:2, pages 597-611.
Crossref
Andrés Aguilera. (2001) Double-strand break repair: are Rad51/RecA–DNA joints barriers to DNA replication?. Trends in Genetics 17:6, pages 318-321.
Crossref
Joep P.P. Muyrers, Youming Zhang, Fraenk Buchholz & A. Francis Stewart. (2000) RecE/RecT and Redα/Redβ initiate double-stranded break repair by specifically interacting with their respective partners. Genes & Development 14:15, pages 1971-1982.
Crossref
James E Haber. (2000) Recombination: a frank view of exchanges and vice versa. Current Opinion in Cell Biology 12:3, pages 286-292.
Crossref
D.O. FERGUSON, J.M. SEKIGUCHI, K.M. FRANK, Y. GAO, N.E. SHARPLESS, Y. GU, J. MANIS, R.A. DEPINHO & F.W. ALT. (2000) The Interplay between Nonhomologous End-joining and Cell Cycle Checkpoint Factors in Development, Genomic Stability, and Tumorigenesis. Cold Spring Harbor Symposia on Quantitative Biology 65:0, pages 395-404.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.