22
Views
73
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

RAD51 Is Required for the Repair of Plasmid Double-Stranded DNA Gaps from Either Plasmid or Chromosomal Templates

, &
Pages 1194-1205 | Received 10 Jun 1999, Accepted 19 Nov 1999, Published online: 28 Mar 2023

REFERENCES

  • Aguilera, A.. 1995. Genetic evidence for different RAD52-dependent intrachromosomal recombination pathways in Saccharomyces cerevisiae. Curr. Genet. 27:298–305
  • Allen, J. B., Zhou, Z., Siede, W., Friedberg, E. C., and Elledge, S. J.. 1994. The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev. 8:2401–2415
  • Bai, Y., Davis, A. P., and Symington, L. S.. 1999. A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence of RAD51 or RAD59. Genetics 153:1117–1130
  • Bai, Y., and Symington, L. S.. 1996. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 10:2025–2037
  • Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F., and Cullin, C.. 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21:3329–3330
  • Benson, F. E., Baumann, P., and West, S. C.. 1998. Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature 391:401–404
  • Boulton, S. J., and Jackson, S. P.. 1996. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15:5093–5103
  • Bouton, A. H., and Smith, M. M.. 1986. Fine-structure analysis of the DNA sequence requirements for autonomous replication of Saccharomyces cerevisiae plasmids. Mol. Cell. Biol. 6:2354–2363
  • Chen, W., and Jinks-Robertson, S.. 1998. Mismatch repair proteins regulate heteroduplex formation during mitotic recombination in yeast. Mol. Cell. Biol. 18:6525–6537
  • Cost, G. J., and Boeke, J. D.. 1996. A useful colony colour phenotype associated with the yeast selectable/counter-selectable marker MET15. Yeast 12:939–941
  • Fan, H. Y., Cheng, K. K., and Klein, H. L.. 1996. Mutations in the RNA polymerase II transcription machinery suppress the hyperrecombination mutant hpr1 delta of Saccharomyces cerevisiae. Genetics 142:749–759
  • Ferguson, D. O., and Holloman, W. K.. 1996. Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model. Proc. Natl. Acad. Sci. USA 93:5419–5424
  • Ferguson, D. O., Rice, M. C., Rendi, M. H., Kotani, H., Kmiec, E. B., and Holloman, W. K.. 1997. Interaction between Ustilago maydis REC2 and RAD51 genes in DNA repair and mitotic recombination. Genetics 145:243–251
  • Glaser, V. M., Glasunov, A. V., Tevzadze, G. G., Perera, J. R., and Shestakov, S. V.. 1990. Genetic control of plasmid DNA double-strand gap repair in yeast, Saccharomyces cerevisiae. Curr. Genet. 18:1–5
  • Glasunov, A. V., and Glaser, V. M.. 1999. The influence of mutation rad57-1 on the fidelity of DNA double-strand gap repair in Saccharomyces cerevisiae. Curr. Genet. 34:430–437
  • Hays, S. L., Firmenich, A. A., and Berg, P.. 1995. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc. Natl. Acad. Sci. USA 92:6925–6929
  • Hinnen, A., Hicks, J. B., and Fink, G. R.. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. USA 75:1929–1933
  • Ivanov, E. L., and Haber, J. E.. 1995. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:2245–2251
  • Ivanov, E. L., Sugawara, N., Fishman-Lobell, J., and Haber, J. E.. 1996. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142:693–704
  • Johnson, R., and Symington, L. S.. 1995. Functional differences and interactions among the yeast RecA homologues Rad51, Rad55 and Rad57. Mol. Cell. Biol. 15:4843–4850
  • Kerjan, P., Cherest, H., and Surdin-Kerjan, Y.. 1986. Nucleotide sequence of the Saccharomyces cerevisiae MET25 gene. Nucleic Acids Res. 14:7861–7871
  • Kmiec, E., and Holloman, W. K.. 1981. Beta protein of bacteriophage lambda promotes renaturation of DNA. J. Biol. Chem. 256:12636–12639
  • Lewis, L. K., Kirchner, J. M., and Resnick, M. A.. 1998. Requirement for end-joining and checkpoint functions, but not RAD52-mediated recombination, after EcoRI endonuclease cleavage of Saccharomyces cerevisiae DNA. Mol. Cell. Biol. 18:1891–1902
  • Li, Z., Karakousis, G., Chiu, S. K., Reddy, G., and Radding, C. M.. 1998. The beta protein of phage lambda promotes strand exchange. J. Mol. Biol. 276:733–744
  • Liefshitz, B., Parket, A., Maya, R., and Kupiec, M.. 1995. The role of DNA repair genes in recombination between repeated sequences in yeast. Genetics 140:1199–1211
  • Lovett, S. T., and Mortimer, R. K.. 1987. Characterization of null mutants of the RAD55 gene of Saccharomyces cerevisiae: effects of temperature, osmotic strength and mating type. Genetics 116:547–553
  • Malkova, A., Ivanov, E. L., and Haber, J. E.. 1996. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc. Natl. Acad. Sci. USA 93:7131–7136
  • Malone, R. E., and Esposito, R. E.. 1980. The RAD52 gene is required for homothallic interconversion of mating type and spontaneous mitotic recombination in yeast. Proc. Natl. Acad. Sci. USA 77:503–507
  • McDonald, J. P., Levine, A. S., and Woodgate, R.. 1997. The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism. Genetics 147:1557–1568
  • McDonald, J. P., and Rothstein, R.. 1994. Unrepaired heteroduplex DNA in Saccharomyces cerevisiae is decreased in RAD1 RAD52-independent recombination. Genetics 137:393–405
  • Milne, G. T., Jin, S., Shannon, K., and Weaver, D. T.. 1996. Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:4189–4198
  • Moore, J. K., and Haber, J. E.. 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2164–2173
  • Morrow, D. M., Connelly, C., and Hieter, P.. 1997. “Break copy” duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147:371–382
  • Mortensen, U. H., Bendixen, C., Sunjevaric, I., and Rothstein, R.. 1996. DNA strand annealing is promoted by the yeast Rad52 protein. Proc. Natl. Acad. Sci. USA 93:10729–10734
  • Nassif, N., Penney, J., Pal, S., Engels, W. R., and Gloor, G. B.. 1994. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol. Cell. Biol. 14:1613–1625
  • New, J. H., Sugiyama, T., Zaitseva, E., and Kowalczykowski, S. C.. 1998. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391:407–410
  • Orr-Weaver, T. L., and Szostak, J. W.. 1983. Yeast recombination: the association between double-strand gap repair and crossing-over. Proc. Natl. Acad. Sci. USA 80:4417–4421
  • Orr-Weaver, T. L., Szostak, J. W., and Rothstein, R. J.. 1981. Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci. USA 78:6354–6358
  • Paques, F., Leung, W. Y., and Haber, J. E.. 1998. Expansions and contractions in a tandem repeat induced by double-strand break repair. Mol. Cell. Biol. 18:2045–2054
  • Park, M. S., Ludwig, D. L., Stigger, E., and Lee, S. H.. 1996. Physical interaction between human RAD52 and RPA is required for homologous recombination in mammalian cells. J. Biol. Chem. 271:18996–19000
  • Passy, S. I., Yu, X., Li, Z., Radding, C. M., and Egelman, E. H.. 1999. Rings and filaments of beta protein from bacteriophage lambda suggest a superfamily of recombination proteins. Proc. Natl. Acad. Sci. USA 96:4279–4284
  • Perera, J. R., Glasunov, A. V., Glaser, V. M., and Boreiko, A. V.. 1988. Repair of double-strand breaks in plasmid DNA in the yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 213:421–424
  • Petukhova, G., Stratton, S., and Sung, P.. 1998. Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature 393:91–94
  • Plessis, A., and Dujon, B.. 1993. Multiple tandem integrations of transforming DNA sequences in yeast chromosomes suggest a mechanism for integrative transformation by homologous recombination. Gene 134:41–50
  • Rattray, A. J., and Symington, L. S.. 1995. Multiple pathways for homologous recombination in Saccharomyces cerevisiae. Genetics 139:45–56
  • Rattray, A. J., and Symington, L. S.. 1994. Use of a chromosomal inverted repeat to demonstrate that the RAD51 and RAD52 genes of Saccharomyces cerevisiae have different roles in mitotic recombination. Genetics 138:587–595
  • Reaume, S. E., and Tatum, E. L.. 1949. Spontaneous and nitrogen mustard-induced nutritional deficiencies in Saccharomyces cerevisiae. Arch. Biochem. 22:331–338
  • Richardson, C., Moynahan, M. E., and Jasin, M.. 1998. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 12:3831–3842
  • Roman, H.. 1956. Studies of gene mutation in Saccharomyces. Cold Spring Harbor Symp. Quant. Biol. 21:175–185
  • Roth, D. B., Porter, T. N., and Wilson, J. H.. 1985. Mechanisms of nonhomologous recombination in mammalian cells. Mol. Cell. Biol. 5:2599–2607
  • Schiestl, R. H., Zhu, J., and Petes, T. D.. 1994. Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:4493–4500
  • Schild, D., Calderon, I. L., Contopoulou, C. R., and Mortimer, R. K.. 1983. Cloning of yeast recombination repair genes and evidence that several are nonessential genes Cellular responses to DNA damage. Friedberg, E. C., and Bridges, B. A. 417–427 Alan R. Liss, Inc., New York, N.Y
  • Sherman, F., Fink, G., and Hicks, J.. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y
  • Shinohara, A., Ogawa, H., and Ogawa, T.. 1992. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69:457–470
  • Shinohara, A., and Ogawa, T.. 1998. Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391:404–407
  • Shinohara, A., Shinohara, M., Ohta, T., Matsuda, S., and Ogawa, T.. 1998. Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing. Genes Cells 3:145–156
  • Sikorski, R. S., and Hieter, P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Stotz, A., and Linder, P.. 1990. The ADE2 gene from Saccharomyces cerevisiae: sequence and new vectors. Gene 95:91–98
  • Sugawara, N., and Haber, J. E.. 1992. Characterization of double-strand break-induced recombination: Homology requirements and single-stranded DNA formation. Mol. Cell. Biol. 12:563–575
  • Sugawara, N., Ivanov, E. L., Fishman-Lobell, J., Ray, B. L., Wu, X., and Haber, J. E.. 1995. DNA structure-dependent requirements for yeast RAD genes in gene conversion. Nature 373:84–86
  • Sun, Z., Hsiao, J., Fay, D. S., and Stern, D. F.. 1998. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281:272–274
  • Sung, P.. 1997. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J. Biol. Chem. 272:28194–28197
  • Sung, P.. 1997. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev. 11:1111–1121
  • Sung, P., and Robberson, D. L.. 1995. DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82:453–462
  • Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., and Stahl, F. W.. 1983. The double-strand-break repair model for recombination. Cell 33:25–35
  • Thomas, B. J., and Rothstein, R.. 1989. The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Genetics 123:725–738
  • Van Dyck, E., Hajibagheri, N. M., Stasiak, A., and West, S. C.. 1998. Visualisation of human rad52 protein and its complexes with hRad51 and DNA. J. Mol. Biol. 284:1027–1038
  • Weinert, T. A., Kiser, G. L., and Hartwell, L. H.. 1994. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev. 8:652–665
  • Wilson, T. E., Grawunder, U., and Lieber, M. R.. 1997. Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature 388:495–498
  • Winston, F., Chumley, F., and Fink, G. R.. 1983. Eviction and transplacement of mutant genes in yeast. Methods Enzymol. 101:211–228
  • Yokochi, T., Kusano, K., and Kobayashi, I.. 1995. Evidence for conservative (two-progeny) DNA double-strand break repair. Genetics 139:5–17
  • Zhang, Y., Buchholz, F., Muyrers, J. P. P., and Stewart, A. F.. 1998. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20:123–128
  • Zou, H., and Rothstein, R.. 1997. Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell 90:87–96

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.