724
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Enzymatic Characteristics of Cellobiose Phosphorylase from Ruminococcus albus NE1 and Kinetic Mechanism of Unusual Substrate Inhibition in Reverse Phosphorolysis

, , , , , & show all
Pages 812-818 | Received 12 Dec 2011, Accepted 13 Jan 2012, Published online: 22 May 2014

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (3)

Yu Gao, Wataru Saburi, Yodai Taguchi & Haruhide Mori. (2019) Biochemical characteristics of maltose phosphorylase MalE from Bacillus sp. AHU2001 and chemoenzymatic synthesis of oligosaccharides by the enzyme. Bioscience, Biotechnology, and Biochemistry 83:11, pages 2097-2109.
Read now
Nongluck Jaito, Wataru Saburi, Rei Odaka, Yusuke Kido, Ken Hamura, Mamoru Nishimoto, Motomitsu Kitaoka, Hirokazu Matsui & Haruhide Mori. (2014) Characterization of a thermophilic 4-O-β-d-mannosyl-d-glucose phosphorylase from Rhodothermus marinus. Bioscience, Biotechnology, and Biochemistry 78:2, pages 263-270.
Read now
Yutaka YAMAMOTO, Daichi KAWASHIMA, Ayu HASHIZUME, Makoto HISAMATSU & Naoto ISONO. (2013) Purification and Characterization of 1,3-β-D-Glucan Phosphorylase from Ochromonas danica . Bioscience, Biotechnology, and Biochemistry 77:9, pages 1949-1954.
Read now

Articles from other publishers (18)

Ravindra Pal Singh, Jayashree Niharika, Raksha Thakur, Ben A. Wagstaff, Gulshan Kumar, Rikuya Kurata, Dhaval Patel, Colin W. Levy, Takatsugu Miyazaki & Robert A. Field. (2023) Utilization of dietary mixed-linkage β-glucans by the Firmicute Blautia producta. Journal of Biological Chemistry 299:6, pages 104806.
Crossref
Alem Storani, Sergio A. Guerrero & Alberto A. Iglesias. (2023) Insights to improve the activity of glycosyl phosphorylases from Ruminococcus albus 8 with cello-oligosaccharides. Frontiers in Chemistry 11.
Crossref
Sara Ricci, Cátia Pacífico, Ezequias Castillo-Lopez, Raul Rivera-Chacon, Heidi E. Schwartz-Zimmermann, Nicole Reisinger, Franz Berthiller, Qendrim Zebeli & Renee M. Petri. (2022) Progressive microbial adaptation of the bovine rumen and hindgut in response to a step-wise increase in dietary starch and the influence of phytogenic supplementation. Frontiers in Microbiology 13.
Crossref
Ao Li, Mounir Benkoulouche, Simon Ladeveze, Julien Durand, Gianluca Cioci, Elisabeth Laville & Gabrielle Potocki-Veronese. (2022) Discovery and Biotechnological Exploitation of Glycoside-Phosphorylases. International Journal of Molecular Sciences 23:6, pages 3043.
Crossref
Shaowei Bai, Liangzhen Yang, Honglei Wang, Chao Yang, Xuechen Hou, Jingjie Gao & Zuoming Zhang. (2022) Cellobiose phosphorylase from Caldicellulosiruptor bescii catalyzes reversible phosphorolysis via different kinetic mechanisms. Scientific Reports 12:1.
Crossref
Bernd Nidetzky & Chao Zhong. (2021) Phosphorylase-catalyzed bottom-up synthesis of short-chain soluble cello-oligosaccharides and property-tunable cellulosic materials. Biotechnology Advances 51, pages 107633.
Crossref
Zorica Ubiparip, Marc De Doncker, Koen Beerens, Jorick Franceus & Tom Desmet. (2021) β-Glucan phosphorylases in carbohydrate synthesis. Applied Microbiology and Biotechnology 105:10, pages 4073-4087.
Crossref
Nian Liu, Aurélie Fosses, Clara Kampik, Goetz Parsiegla, Yann Denis, Nicolas Vita, Henri-Pierre Fierobe & Stéphanie Perret. (2019) In vitro and in vivo exploration of the cellobiose and cellodextrin phosphorylases panel in Ruminiclostridium cellulolyticum: implication for cellulose catabolism. Biotechnology for Biofuels 12:1.
Crossref
Sakonwan Kuhaudomlarp, Samuel Walpole, Clare E. M. Stevenson, Sergey A. Nepogodiev, David M. Lawson, Jesus Angulo & Robert A. Field. (2019) Unravelling the Specificity of Laminaribiose Phosphorylase from Paenibacillus sp. YM-1 towards Donor Substrates Glucose/Mannose 1-Phosphate by Using X-ray Crystallography and Saturation Transfer Difference NMR Spectroscopy . ChemBioChem 20:2, pages 181-192.
Crossref
Yuanyuan Wu, Guotao Mao, Haiyan Fan, Andong Song, Yi-Heng Percival Zhang & Hongge Chen. (2017) Biochemical properties of GH94 cellodextrin phosphorylase THA_1941 from a thermophilic eubacterium Thermosipho africanus TCF52B with cellobiose phosphorylase activity. Scientific Reports 7:1.
Crossref
Kulika Chomvong, Eric Lin, Michael Blaisse, Abigail E. Gillespie & Jamie H. D. Cate. (2016) Relief of Xylose Binding to Cellobiose Phosphorylase by a Single Distal Mutation. ACS Synthetic Biology 6:2, pages 206-210.
Crossref
Saravanan Devendran, Ahmed M. Abdel-Hamid, Anton F. Evans, Michael Iakiviak, In Hyuk Kwon, Roderick I. Mackie & Isaac Cann. (2016) Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides. Scientific Reports 6:1.
Crossref
Vladimír Puchart. (2015) Glycoside phosphorylases: Structure, catalytic properties and biotechnological potential. Biotechnology Advances 33:2, pages 261-276.
Crossref
Kulika Chomvong, Vesna Kordić, Xin Li, Stefan Bauer, Abigail E Gillespie, Suk-Jin Ha, Eun Joong Oh, Jonathan M Galazka, Yong-Su Jin & Jamie H D Cate. (2014) Overcoming inefficient cellobiose fermentation by cellobiose phosphorylase in the presence of xylose. Biotechnology for Biofuels 7:1.
Crossref
Tatsuya Sawano, Wataru Saburi, Ken Hamura, Hirokazu Matsui & Haruhide Mori. (2013) Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group . FEBS Journal 280:18, pages 4463-4473.
Crossref
Ken Hamura, Wataru Saburi, Hirokazu Matsui & Haruhide Mori. (2013) Modulation of acceptor specificity of Ruminococcus albus cellobiose phosphorylase through site-directed mutagenesis. Carbohydrate Research 379, pages 21-25.
Crossref
Ryosuke Kawahara, Wataru Saburi, Rei Odaka, Hidenori Taguchi, Shigeaki Ito, Haruhide Mori & Hirokazu Matsui. (2012) Metabolic Mechanism of Mannan in a Ruminal Bacterium, Ruminococcus albus, Involving Two Mannoside Phosphorylases and Cellobiose 2-Epimerase. Journal of Biological Chemistry 287:50, pages 42389-42399.
Crossref
Takanori Nihira, Yuka Saito, Motomitsu Kitaoka, Mamoru Nishimoto, Ken’ichi Otsubo & Hiroyuki Nakai. (2012) Characterization of a laminaribiose phosphorylase from Acholeplasma laidlawii PG-8A and production of 1,3-β-d-glucosyl disaccharides. Carbohydrate Research 361, pages 49-54.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.