822
Views
27
CrossRef citations to date
0
Altmetric
Research Article

Numerical assessment of a criterion for the optimal choice of the operative conditions in magnetic nanoparticle hyperthermia on a realistic model of the human head

, &
Pages 688-703 | Received 07 Apr 2015, Accepted 14 Mar 2016, Published online: 07 Jun 2016

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (6)

Cosmo D. Santiago, Gylles R. Ströher, Marcio A. V. Pinto & Sebastião R. Franco. (2023) A multigrid Waveform Relaxation Method for solving the Pennes bioheat equation. Numerical Heat Transfer, Part A: Applications 83:9, pages 976-990.
Read now
Sri Kamal Kandala, Anirudh Sharma, Sahar Mirpour, Eleni Liapi, Robert Ivkov & Anilchandra Attaluri. (2021) Validation of a coupled electromagnetic and thermal model for estimating temperatures during magnetic nanoparticle hyperthermia. International Journal of Hyperthermia 38:1, pages 611-622.
Read now
Aikaterini-Rafailia Tsiapla, Antonia-Areti Kalimeri, Nikolaos Maniotis, Eirini Myrovali, Theodoros Samaras, Mavroeidis Angelakeris & Orestis Kalogirou. (2021) Mitigation of magnetic particle hyperthermia side effects by magnetic field controls. International Journal of Hyperthermia 38:1, pages 511-522.
Read now
Paul R. Stauffer, Dario B. Rodrigues, Robert Goldstein, Thinh Nguyen, Yan Yu, Shuying Wan, Richard Woodward, Michael Gibbs, Ilya L. Vasilchenko, Alexey M. Osintsev, Voichita Bar-Ad, Dennis B. Leeper, Wenyin Shi, Kevin D. Judy & Mark D. Hurwitz. (2020) Feasibility of removable balloon implant for simultaneous magnetic nanoparticle heating and HDR brachytherapy of brain tumor resection cavities. International Journal of Hyperthermia 37:1, pages 1189-1201.
Read now
Sri Kamal Kandala, Eleni Liapi, Louis L. Whitcomb, Anilchandra Attaluri & Robert Ivkov. (2019) Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia. International Journal of Hyperthermia 36:1, pages 115-129.
Read now
Antonios Makridis, Magdalini Tziomaki, Konstantina Topouridou, Maria P. Yavropoulou, John G. Yovos, Orestis Kalogirou, Theodoros Samaras & Mavroeidis Angelakeris. (2016) A novel strategy combining magnetic particle hyperthermia pulses with enhanced performance binary ferrite carriers for effective in vitro manipulation of primary human osteogenic sarcoma cells. International Journal of Hyperthermia 32:7, pages 778-785.
Read now

Articles from other publishers (21)

Sandeep Nain, Neeraj Kumar & Pramod Kumar Avti. (2023) Tumor size dependent MNP dose evaluation in realistic breast tumor models for effective magnetic hyperthermia. Medical Engineering & Physics 121, pages 104065.
Crossref
Martin K. Y. Kwok, Cliona C. J. Maley, Asher Dworkin, Simon Hattersley, Paul Southern & Quentin A. Pankhurst. (2023) Nonspecific eddy current heating in magnetic field hyperthermia. Applied Physics Letters 122:24.
Crossref
Adrian Radoń, Agnieszka Włodarczyk, Łukasz Sieroń, Magdalena Rost-Roszkowska, Łukasz Chajec, Dariusz Łukowiec, Agnieszka Ciuraszkiewicz, Piotr Gębara, Stanisław Wacławek & Aleksandra Kolano-Burian. (2023) Influence of the modifiers in polyol method on magnetically induced hyperthermia and biocompatibility of ultrafine magnetite nanoparticles. Scientific Reports 13:1.
Crossref
Manpreet Singh. (2023) Biological heat and mass transport mechanisms behind nanoparticles migration revealed under microCT image guidance. International Journal of Thermal Sciences 184, pages 107996.
Crossref
Muhammad Suleman. 2023. In Silico Approach Towards Magnetic Fluid Hyperthermia of Cancer Treatment. In Silico Approach Towards Magnetic Fluid Hyperthermia of Cancer Treatment 17 35 .
Nandyala Mahesh, Neetu Singh & Prabal Talukdar. (2022) In-silico investigation of magnetic nanoparticle hyperthermia treatment to estimate the power density and concentration required to achieve the therapeutic effect. International Communications in Heat and Mass Transfer 137, pages 106295.
Crossref
Y. Haripriya Devi, L. Herojit Singh & Boris Wareppam. 2022. Advances in Nanostructured Materials. Advances in Nanostructured Materials 145 161 .
Muhammad Suleman, Samia Riaz & Rashid Jalil. (2020) A mathematical modeling approach toward magnetic fluid hyperthermia of cancer and unfolding heating mechanism. Journal of Thermal Analysis and Calorimetry 146:3, pages 1193-1219.
Crossref
Kassianne Tofani & Saeed Tiari. (2021) Magnetic Nanoparticle Hyperthermia for Cancer Treatment: A Review on Nanoparticle Types and Thermal Analyses. Journal of Engineering and Science in Medical Diagnostics and Therapy 4:3.
Crossref
Carlos Martinez-Boubeta, Konstantinos Simeonidis, Judit Oró, Antonios Makridis, David Serantes & Lluis Balcells. (2021) Finding the Limits of Magnetic Hyperthermia on Core-Shell Nanoparticles Fabricated by Physical Vapor Methods. Magnetochemistry 7:4, pages 49.
Crossref
Joan Estelrich & Maria Antònia Busquets. 2021. Nanomedicines for Brain Drug Delivery. Nanomedicines for Brain Drug Delivery 173 208 .
Izaz Raouf, Salman Khalid, Asif Khan, Jaehun Lee, Heung Soo Kim & Min-Ho Kim. (2020) A review on numerical modeling for magnetic nanoparticle hyperthermia: Progress and challenges. Journal of Thermal Biology 91, pages 102644.
Crossref
Danilo Brizi, Nunzia Fontana, Giulio Giovannetti, Luca Menichetti, Laura Cappiello, Saer Doumett, Costanza Ravagli, Giovanni Baldi & Agostino Monorchio. (2020) A Radiating System for Low-Frequency Highly Focused Hyperthermia With Magnetic Nanoparticles. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 4:2, pages 109-116.
Crossref
K. Simeonidis, C. Martinez-Boubeta, D. Serantes, S. Ruta, O. Chubykalo-Fesenko, R. Chantrell, J. Oró-Solé, Ll. Balcells, A. S. Kamzin, R. A. Nazipov, A. Makridis & M. Angelakeris. (2020) Controlling Magnetization Reversal and Hyperthermia Efficiency in Core–Shell Iron–Iron Oxide Magnetic Nanoparticles by Tuning the Interphase Coupling. ACS Applied Nano Materials 3:5, pages 4465-4476.
Crossref
Meysam Soleymani, Solmaz Khalighfard, Saeed Khodayari, Hamid Khodayari, Mohammad Reza Kalhori, Mahmoud Reza Hadjighassem, Zhila Shaterabadi & Ali Mohammad Alizadeh. (2020) Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells. Scientific Reports 10:1.
Crossref
Geeta Nijhawan, Siddharth Sagar Nijhawan & Minu Sethi. 2019. Noble Metal-Metal Oxide Hybrid Nanoparticles. Noble Metal-Metal Oxide Hybrid Nanoparticles 241 263 .
Gennaro Bellizzi & Ovidio M. Bucci. 2018. Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy. Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy 129 191 .
Suriyanto, E. Y. K. Ng & S. D. Kumar. (2017) Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review. BioMedical Engineering OnLine 16:1.
Crossref
M. Angelakeris. (2017) Magnetic nanoparticles: A multifunctional vehicle for modern theranostics. Biochimica et Biophysica Acta (BBA) - General Subjects 1861:6, pages 1642-1651.
Crossref
Ayesha Sohail, Zaki Ahmad, O. Anwar Bég, Sarmad Arshad & Lubna Sherin. (2017) A review on hyperthermia via nanoparticle-mediated therapy. Bulletin du Cancer 104:5, pages 452-461.
Crossref
Gennaro Bellizzi & Ovidio Mario Bucci. (2017) Magnetic Nanoparticle-Guided Blind Focusing of the Electric Field for Microwave Hyperthermia. IEEE Access 5, pages 17246-17257.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.