287
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Design of optimal sliding-mode control using partial eigenstructure assignment

, , &
Pages 1511-1523 | Received 14 Jan 2017, Accepted 24 Oct 2017, Published online: 21 Nov 2017
 

ABSTRACT

This paper describes a new framework for the design of a sliding surface for a given system while multi-channel H2 performances of the closed-loop system are under control. In contrast to most of the current sliding surface design schemes, in this new method, the level of control effort required to maintain sliding is penalised. The proposed method for the design of optimal sliding mode control is implemented in two stages. In the first stage, a state feedback gain is derived using a linear matrix inequality (LMI)-based scheme that can assign a number of the closed-loop eigenvalues to a known value whilst satisfying performance specifications. The sliding function matrix related to the particular state feedback derived in the first stage is obtained in the second stage by using one of the two different methods developed for this goal. The proposed theory is evaluated by using numerical examples including the problem of steady-state output tracking via a state-feedback SMC for flight control.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.