132
Views
2
CrossRef citations to date
0
Altmetric
Articles

Flow-based attack detection and accommodation for networked control systems

&
Pages 834-847 | Received 20 Jul 2018, Accepted 15 May 2019, Published online: 28 May 2019
 

Abstract

This paper is concerned about detection and estimation of malicious attacks on the network and the linear physical system of a networked control system (NCS) by using linear matrix inequality (LMI)-based technique. Certain class of attacks on the communication network impacts the traffic flow causing network delays and packet losses to increase which in turn affects the stability of the NCS. Therefore in this paper, a novel observer-based scheme is proposed to capture the abnormal traffic flow at the bottleneck node of the communication network via the attack detection residual. An LMI-based design is proposed that ensures both system stability and H-infinity performance and also detects attacks on the network as well as on the physical system. Upon detection, the physical system is stabilised by adjusting the controller gains provided certain conditions are met. Both simulation and hardware implementation results are included to demonstrate the applicability of the proposed scheme.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by National Science Foundation [CMMI 1547042,I/UCRC 1134721].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.