164
Views
2
CrossRef citations to date
0
Altmetric
Articles

Approximate Solution to the Spray Heat Transfer Problem at High Surface Temperatures and Liquid Mass Fluxes

, , &
Pages 1649-1655 | Published online: 29 Jun 2018
 

ABSTRACT

A basic energy balance that includes phase change has been used to describe the boiling heat transfer process. By using the differential form of this energy balance, the relative change in the heat transfer coefficient can be determined when the surface and coolant temperature change. This represents a general solution to the boiling heat transfer problem under high flux conditions where fully mixed thermal boundary layer exists, although the solution procedure is approximate. The results agree quite well with experimental data. Further work remains to prescribe the heat transfer process near the critical heat flux and Leidenfrost point. This approach vastly reduces the empiricism and data required for boiling heat transfer processes, and also existing data can be used to generalize to a wide range of conditions.

Acknowledgements

This research has be in part (VUTB) supported by the project LO1202 under the National Sustainability Programme I, granted by MEYS of the Czech Republic.

Additional information

Notes on contributors

Tae-Woo Lee

Tae-Woo Lee is a faculty in Mechanical and Aerospace Engineering, School of Engineering for Matter, Transport and Energy, Arizona State University, Tempe, AZ. His current research interests are in spray flows, heat transfer in sprays, and urban environment at global scale. In addition to publishing in journals and conferences, he also has written monographs on thermal and flow measurements, and aerospace propulsion.

Milan Hnizdil

Milan Hnizdil is a project engineer in the Laboratory of Heat Transfer and Fluid Flow, Mechanical Engineering at Brno University of Technology, Czech Republic. He has a Ph.D. in Mechanical Engineering from Brno University of Technology, 2012. He has worked in the Laboratory of Heat Transfer and Fluid Flow for 6 years, and is known for working long hours to analyze the data with three-screen workstation.

Martin Chabicovsky

Martin Chabicovsky is a junior researcher in the Laboratory of Heat Transfer and Fluid Flow, Mechanical Engineering at Brno University of Technology, Czech Republic. He has a Ph.D. in Mechanical Engineering from Brno University of Technology, 2016. His dissertation focused on spray heat transfer, where much of the current data originates.

Miroslav Raudensky

Miroslav Raudensky is the director of the Laboratory of Heat Transfer and Fluid Flow, Mechanical Engineering at Brno University of Technology, Czech Republic. His laboratory has produced extensive data sets on spray heat transfer processes, and has unique capabilities to study high mass flux and surface temperature conditions. Aside from spray heat transfer and fluid research, he flies a small aircraft to exotic locations around the world.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 323.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.