116
Views
1
CrossRef citations to date
0
Altmetric
Articles

Artificial neural network-based sensitivity analysis and experimental investigation of liquid–solid fluidization technique for low-grade coal upgradation

, &
Pages 265-277 | Received 02 Feb 2021, Accepted 12 Jun 2021, Published online: 21 Jul 2021
 

Abstract

Liquid-solid fluidization technique is being applied where low-grade coal or minerals enrichment is mostly density-based. Static and dynamic behavior of particles in a fluid medium has been extensively investigated over the years because of its dynamic applications across various industries. In this work, bed characterization studies and experiments have been conducted to study coal washing ability of the liquid-solid fluidized bed separator. Results have been recorded in terms of ash rejection%, combustible recovery% and separation efficiency%. Minimum fluidization velocity and pressure drop values have been predicted using existing theoretical correlations and compared with the experimental values. A three-layered (4:5:3) feedforward back-propagation (FFBP) neural network model was developed using Levenberg-Marquardt algorithm, LOGSIG and MSE as training, transfer and performance functions respectively. Garson’s algorithm and connection weight approach have been employed for sensitivity analysis to interpret the neural network results physically. Coefficients of correlation, all R (including training, validation & testing datasets) obtained for outputs ash rejection (R = 0.9960), combustible recovery (R = 0.9952) and separation efficiency (R = 0.9944) suggest that predicted values are in agreement with the experimental values and the developed model is a good fit.

Graphical Abstract

Acknowledgement

Authors would like to express special appreciation and gratitude to Late Prof. Venugopal Rayasam for his valuable inputs in this study. Authors would also like to thank Department of Fuel, Minerals & Metallurgical Engineering, IIT (ISM) Dhanbad and Mineral Processing Department, CSIR-IMMT Bhubaneswar for providing all the research facilities.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.