116
Views
1
CrossRef citations to date
0
Altmetric
Articles

Artificial neural network-based sensitivity analysis and experimental investigation of liquid–solid fluidization technique for low-grade coal upgradation

, &
Pages 265-277 | Received 02 Feb 2021, Accepted 12 Jun 2021, Published online: 21 Jul 2021

References

  • Galvin, K. P.; Callen, A. M.; Spear, S. Gravity Separation of Coarse Particles Using the Reflux Classifier. Miner. Eng. 2010, 23, 339–349. DOI: 10.1016/j.mineng.2009.09.014.
  • Tripathy, A.; Panda, L.; Sahoo, A. K.; Biswal, S. K.; Dwari, R. K.; Sahu, A. K. Statistical Optimization Study of Jigging Process on Beneficiation of Fine Size High Ash Indian Non-Coking Coal. Adv. Powder Technol. 2016, 27, 1219–1224. DOI: 10.1016/j.apt.2016.04.006.
  • Ken, B. S.; Aich, S.; Saxena, V. K.; Nandi, B. K. Combustion Behavior of KOH Desulphurized Coals Assessed by TGA-DTG. Energy Sources Part A 2018, 40, 2458–2466. DOI: 10.1080/15567036.2018.1502844.
  • Xu, Z.; Yoon, R. H. The Role of Hydrophobia Interactions in Coagulation. J. Colloid Interface Sci. 1989, 132, 532–541. DOI: 10.1016/0021-9797(89)90267-1.
  • Das, M.; Meikap, B. C.; Saha, R. K. Study of Hydrodynamics and Dry Beneficiation Characteristics of Coal in the Riser of a Circulating Fluidized Bed Reactor. Int. J. Coal Prep. Util. 2013, 33, 266–276. DOI: 10.1080/19392699.2013.817394.
  • Chaurasia, R. C.; Sahu, D.; Suresh, N. Cleaning of Coal by Multi Gravity Separator. Trans. Indian Inst. Met. 2018, 71, 1487–1495. DOI: 10.1007/s12666-018-1284-1.
  • Richardson, J. F.; Zaki, W. N. Sedimentation and Fluidisation: Part I. Trans. Inst. Chem. Eng. 1979, 32, 35–53. DOI: 10.1016/S0263-8762(97)80006-8.
  • Juma, A. K. A.; Richardson, J. F. Segregation and Mixing in Liquid Fluidized Beds. Chem. Eng. Sci. 1983, 38, 955–967. DOI: 10.1016/0009-2509(83)80016-5.
  • Formisani, B.; Girimonte, R.; Longo, T. The Fluidization Process of Binary Mixtures of Solids: Development of the Approach Based on the Fluidization Velocity Interval. Powder Technol. 2008, 185, 97–108. DOI: 10.1016/j.powtec.2007.10.003.
  • Galvin, K. P.; Walton, K.; Zhou, J. How to Elutriate Particles according to Their Density. Chem. Eng. Sci. 2009, 64, 2003–2010. DOI: 10.1016/j.ces.2009.01.031.
  • Tripathy, A.; Bagchi, S.; Biswal, S. K.; Meikap, B. C. Effect of Fin Type Baffle on the Particle Hydrodynamics, Separation and Misplacement in a Liquid Solid Fluidized Bed Separator. Adv. Powder Technol. 2019, 30, 428–438. DOI: 10.1016/j.apt.2018.11.022.
  • Kumari, A.; Tripathy, A.; Rayasam, V. Performance Characterization and Misplacement Studies of Liquid – Solid Fluidized Bed Density Separator for Coal Beneficiation Using Taguchi-ANOVA Method. Part. Sci. Technol. 2021, 39, 436–448. DOI: 10.1080/02726351.2020.1751357.
  • Escudié, R.; Epstein, N.; Grace, J. R.; Bi, H. T. Effect of Particle Shape on Liquid-Fluidized Beds of Binary (and Ternary) Solids Mixtures: Segregation vs. mixing. Chem. Eng. Sci. 2006, 61, 1528–1539. DOI: 10.1016/j.ces.2005.08.028.
  • Mawatari, Y.; Tatemoto, Y.; Noda, K. Prediction of Minimum Fluidization Velocity for Vibrated Fluidized Bed. Powder Technol. 2003, 131, 66–70. DOI: 10.1016/S0032-5910(02)00323-6.
  • Mukherjee, A. K.; Kumar, A. Liquid/Solid Fluidization Its Role and Limitation in Fine beneficiation - A Review. Miner. Process. Extr. Metall. Rev. 2009, 30, 280–306. DOI: 10.1080/08827500902743916.
  • Ham, J. M.; Thomas, S.; Guazzelli, E.; Homsy, G. M.; Anselmet, M. C. An Experimental Study of the Stability of Liquid-Fluidized Beds. Int. J. Multiphase Flow 1990, 16, 171–185. DOI: 10.1016/0301-9322(90)90052-K.
  • Zenit, R.; Hunt, M. L. Solid Fraction Fluctuations in Solid-Liquid Flows. Int. J. Multiphase Flow 2000, 26, 763–781. DOI: 10.1016/S0301-9322(99)00066-X.
  • Khosravi, B. H.; Basirat, T. H. Experimental Study on Hydrodynamic Characteristics of Gas-Solid Pulsed Fluidized Bed. Powder Technol. 2013, 237, 14–23. DOI: 10.1016/j.powtec.2013.01.001.
  • Lim, K. S.; Zhu, J. X.; Grace, J. R. Hydrodynamics of Gas-Solid Fluidization. Int. J. Multiphase Flow 1995, 21, 141–193. DOI: 10.1016/0301-9322(95)00038-Y.
  • Sahu, A. K.; Tripathy, A.; Biswal, S. K.; Parida, A. Stability Study of an Air Dense Medium Fluidized Bed Separator for Beneficiation of High-Ash Indian Coal. Int. J. Coal Prep. Util. 2011, 31, 127–148. DOI: 10.1080/19392699.2011.574936.
  • Fan, X.; Zhang, G.; Zhao, Y.; Zhou, C.; Dong, L.; Duan, C. Effect of Middling Coal on Separation Efficiency in Air Dense Gas–Solid Fluidized Bed. Int. J. Coal Prep. Util. 2018, 1–17. DOI: 10.1080/19392699.2018.1498847.
  • Olden, J. D.; Jackson, D. A. Illuminating the ‘“Black Box” ’: A Randomization Approach for Understanding Variable Contributions in Artificial Neural Networks. Ecol. Model. 2002, 154, 135–150. DOI: 10.1016/S0304-3800(02)00064-9.
  • Yadav, A. M.; Chaurasia, R. C.; Suresh, N.; Gajbhiye, P. Application of Artificial Neural Networks and Response Surface Methodology Approaches for the Prediction of Oil Agglomeration Process. Fuel 2018, 220, 826–836. DOI: 10.1016/j.fuel.2018.02.040.
  • Tripathy, A.; Bagchi, S.; Biswal, S. K.; Meikap, B. C. Prediction of Degree of Particle Misplacement in Liquid Solid Fluidization Using Artificial Neural Network. Sep. Sci. Technol. 2020, 55, 68–80. DOI: 10.1080/01496395.2019.1565773.
  • Asafa, T. B.; Tabet, N.; Said, S. A. M. Neurocomputing Taguchi Method – ANN Integration for Predictive Model of Intrinsic Stress in Hydrogenated Amorphous Silicon Film Deposited by Plasma Enhanced Chemical Vapour Deposition. Neurocomputing 2013, 106, 86–94. DOI: 10.1016/j.neucom.2012.10.019.
  • Razzak, S. A.; Rahman, S. M.; Hossain, M. M.; Zhu, J. Investigation of Artificial Neural Network Methodology for Modeling of a Liquid – Solid Circulating Fluidized Bed Riser. Powder Technol. 2012, 229, 71–77. DOI: 10.1016/j.powtec.2012.06.010.
  • Lourakis, M. I. A. A Brief Description of the Levenberg-Marquardt Algorithm Implemened by Levmar. Found. Res. Technol.- Hellas (FORTH) GREECE.2005, 1-5.
  • Gavin, H. P. The Levenburg-Marqurdt Algorithm for Nonlinear Least Squares Curve-Fitting Problems. Duke University 2020, 1–19.
  • Tripathy, A.; Bagchi, S.; Biswal, S. K.; Meikap, B. C. Study of Particle Hydrodynamics and Misplacement in Liquid–Solid Fluidized Bed Separator. Chem. Eng. Res. Des. 2017, 117, 520–532. DOI: 10.1016/j.cherd.2016.11.009.
  • Panda, L.; Banerjee, P. K.; Biswal, S. K.; Venugopal, R.; Mandre, N. R. Artificial Neural Network Approach to Assess Selective Flocculation on Hematite and Kaolinite. Int. J. Miner. Metall. Mater. 2014, 21, 637–646. DOI: 10.1007/s12613-014-0952-3.
  • Panda, L.; Sahoo, A. K.; Tripathy, A.; Biswal, S. K.; Sahu, A. K. Application of Artificial Neural Network to Study the Performance of Jig for Beneficiation of Non-Coking Coal. Fuel 2012, 97, 151–156. DOI: 10.1016/j.fuel.2012.02.018.
  • Chaurasia, R. C.; Nikkam, S. Application of Artificial Neural Network to Study the Performance of Multi Gravity Separator (MGS) Treating Iron Ore Fines. Part. Sci. Technol. 2017, 35, 93–102. DOI: 10.1080/02726351.2015.1131791.
  • Wang, L.; Sharifzadeh, M.; Templer, R.; Murphy, R. J. Bioethanol Production from Various Waste Papers : Economic Feasibility and Sensitivity Analysis. Appl. Energy 2013, 111, 1172–1182. DOI: 10.1016/j.apenergy.2012.08.048.
  • Pianosi, F.; Beven, K.; Freer, J.; Hall, J. W.; Rougier, J.; Stephenson, D. B.; Wagener, T. Environmental Modeling & Software Sensitivity Analysis of Environmental Models : A Systematic Review with Practical Work Flow. Environ. Model. Software 2016, 79, 214–232. DOI: 10.1016/j.envsoft.2016.02.008.
  • Olden, J. D.; Joy, M. K.; Death, R. G. An Accurate Comparison of Methods for Quantifying Variable Importance in Artificial Neural Networks Using Simulated Data. Ecol. Model. 2004, 178, 389–397. DOI: 10.1016/j.ecolmodel.2004.03.013.
  • Gevrin, F.; Masbernat, O.; Simonin, O. Granular Pressure and Particle Velocity Fluctuations Prediction in Liquid Fluidized Beds. Chem. Eng. Sci. 2008, 63, 2450–2464. DOI: 10.1016/j.ces.2008.01.031.
  • Daleffe, R. V.; Ferreira, M. C.; Freire, J. T. Effects of Binary Particle Size Distribution on the Fluid Dynamic Behaviour of Fluidized, Vibrated and Vibrofluidized Beds. Braz. J. Chem. Eng. 2008, 25, 83–94. DOI: 10.1590/S0104-66322008000100010.
  • Ergun, S.; Orning, A. A. Fluid Flow through Randomly Packed Columns and Fluidized Beds. Ind. Eng. Chem. 1949, 41, 1179–1184. DOI: 10.1021/ie50474a011.
  • Carman, P. C. Fluid Flow through Granular Beds. Trans. Inst. Chem. Eng. 1937, 15, S32–S48. DOI: 10.1016/s0263-8762(97)80003-2.
  • Wen, C. Y.; Yu, Y. H. A Generalized Method for Predicting the Minimum Fluidization Velocity. AIChE J. 1966, 12, 610–612. DOI: 10.1002/aic.690120343.
  • Mohanta, S.; Meikap, B. C. Influence of Medium Particle Size on the Separation Performance of an Air Dense Medium Fluidized Bed Separator for Coal Cleaning. J. S Afr. Inst. Min. Metall. 2015, 115, 661–766. DOI: 10.17159/2411-9717/2015/v115n8a13.
  • Sahu, D.; Chaurasia, R. C.; Suresh, N. Statistical Studies on High Ash Indian Coal Crushed to (− 3 mm) Using 76 mm Dense Medium Cyclone. Int. J. Coal Prep. Util. 2019, 1–21. DOI: 10.1080/19392699.2019.1605987.
  • Garson, G. D. Interpreting Neural Network Connection Weights. AI Expert 1991, 6, 46–51. DOI: 10.5555/129449.129452.
  • Chaurasia, R. C.; Sahu, D.; Suresh, N. Prediction of Ash Content and Yield Percent of Clean Coal in Multi Gravity Separator Using Artificial Neural Networks. Int. J. Coal Prep. Util. 2021, 41, 362–369. DOI: 10.1080/19392699.2018.1547282.
  • Cao, M.; Qiao, P. Neural Network Committee-Based Sensitivity Analysis Strategy for Geotechnical Engineering Problems. Neural Comput. Appl. 2008, 17, 509–519. DOI: 10.1007/s00521-007-0143-5.
  • Ross, C. F.; Patel, B. A.; Slice, D. E.; Strait, D. S.; Dechow, P. C.; Richmond, B. G.; Spencer, M. A. Modeling Masticatory Muscle Force in Finite Element Analysis : Sensitivity Analysis Using Principal Coordinates analysis. Anat. Rec. Part A 2005, 283, 288–299. DOI: 10.1002/ar.a.20170.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.