113
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

In-vitro and in-vivo evaluation and anti-colitis activity of esculetin-loaded nanostructured lipid carrier decorated with DSPE-MPEG2000

, , , , , , , , , ORCID Icon, & show all
Pages 442-455 | Received 27 Sep 2022, Accepted 12 May 2023, Published online: 31 May 2023
 

Abstract

Objective

Encapsulation of esculetin into DSPE-MPEG2000 carrier was performed to improve its water solubility and oral bioavailability, as well as enhance its anti-inflammatory effect on a mouse model of ulcerative colitis that was induced with dextran sulphate sodium (DSS).

Methods

We determined the in-vitro and in-vivo high-performance liquid chromatographic (HPLC) analysis method of esculetin; Esculetin-loaded nanostructure lipid carrier (Esc-NLC) was prepared using a thin-film dispersion method, wherein a particle size analyser was used to measure the particle size (PS) and zeta potential (ZP) of the Esc-NLC, while a transmission electron microscope (TEM) was employed to observe its morphology. Also, HPLC was used to measure its drug loading (DL), encapsulation efficiency (EE) and the in-vitro release of the preparation, as well as investigate the pharmacokinetic parameters. In addition, its anti-colitis effect was evaluated via histopathological examination of HE-stained sections and detection of the concentrations of tumour necrosis factor-alpha (TNF-α), interleukin (IL)-1 beta (β), and IL-6 in serum with ELISA kits.

Results

The PS of Esc-NLC was 102.29 ± 0.63 nm with relative standard deviation (RSD) of 1.08% (with poly-dispersity index-PDI of 0.197 ± 0.023), while the ZP was −15.67 ± 1.39 mV with RSD of 1.24%. Solubility of esculetin was improved coupled with prolonged release time. Its pharmacokinetic parameters were compared with that of free esculetin, wherein the maximum concentration of the drug in plasma was increased by 5.5 times. Of note, bioavailability of the drug was increased by 1.7 times, while the half-life was prolonged by 2.4 times. In the anti-colitis efficacy experiment, the mice in Esc and Esc-NLC groups exhibited significantly reduced levels of TNF-α, IL-1β, and IL-6 in their sera comparable to the DSS group. Colon histopathological examination revealed that mice with ulcerative colitis in both Esc and Esc-NLC groups displayed improved inflammation, amid the Esc-NLC groups having the best prophylactic treatment effect.

Conclusion

Esc-NLC could ameliorate DSS-induced ulcerative colitis by improving bioavailability, prolonging drug release time and regulating cytokine release. This observation confirmed the potential of Esc-NLC to reduce inflammation in ulcerative colitis, albeit the need for follow-up research to verify the application of this strategy to clinical treatment of ulcerative colitis.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was funded by National Key R&D Program of China (2018YFE0208600), National Natural Science Foundation of China (81720108030, 8217131836 and 82173785), Postdoctoral Research Fund of Jiangsu Province in 2021 category A (2021K010A), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (18KJB360001), Natural Science Foundation of Jiangsu Province (BK20180866), and Key Planning Social Development Projects of Zhenjiang in Jiangsu Province (SH2021024). Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions; National Key Research and Development Program of China.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.