654
Views
8
CrossRef citations to date
0
Altmetric
Article

Tunability of the elastocaloric response in main-chain liquid crystalline elastomers

, , , , , , ORCID Icon, , , , & show all
Pages 405-411 | Received 12 May 2020, Accepted 18 Jun 2020, Published online: 09 Jul 2020
 

ABSTRACT

Materials exhibiting a large caloric effect could lead to the development of a new generation of heat-management technologies that will have better energy efficiency and be potentially more environmentally friendly. The focus of caloric materials investigations has shifted recently from solid-state materials towards soft materials, such as liquid crystals and liquid crystalline elastomers. It has been shown recently that a large electrocaloric effect exceeding 6 K can be observed in smectic liquid crystals. Here, we report on a significant elastocaloric response observed by direct elastocaloric measurements in main-chain liquid crystal elastomers. It is demonstrated that the character of the nematic to paranematic/isotropic transition can be tuned from the supercritical regime towards the first-order regime, by decreasing the density of crosslinkers. In the latter case, the latent heat additionally enhances the elastocaloric response. Our results indicate that a significant elastocaloric response is present in main-chain liquid crystalline elastomers, driven by stress fields much smaller than in solid elastocaloric materials. Therefore, elastocaloric soft materials can potentially play a significant role as active cooling/heating elements in the development of new heat-management devices.

Graphical abstract

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed on the publisher’s website.

Additional information

Funding

This work was supported by the European Commission [778072 H2020-MSCA-RISE-2017, European Regional Development Fund]; Javna Agencija za Raziskovalno Dejavnost RS [J1- 9147, NAMASTE Centre of Excellence, P1-0099, P1-0125, Space-SI Centre of Excellence].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.