654
Views
8
CrossRef citations to date
0
Altmetric
Article

Tunability of the elastocaloric response in main-chain liquid crystalline elastomers

, , , , , , ORCID Icon, , , , & show all
Pages 405-411 | Received 12 May 2020, Accepted 18 Jun 2020, Published online: 09 Jul 2020

References

  • Valant M. Electrocaloric materials for future solid-state refrigeration technologies. Prog Mater Sci. 2012;57:980–1009.
  • Moya X, Kar-Narayan S, Mathur ND. Caloric materials near ferroic phase transitions. Nat Mater. 2014;13:439–450.
  • Kutnjak Z, Rožič B, Pirc R. Wiley encyclopedia of electrical and electronics engineering. Wiley Online Library; 2015. p. 1–19.
  • Mischenko AS, Zhang Q, Scott JF, et al. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science. 2006;311:1270–1271.
  • Neese B, Chu B, Lu S-G, et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science. 2008;321:821–823.
  • Scott JF. Applications of modern ferroelectrics. Science. 2007;315:954–959.
  • Nair B, Usui T, Crossley S, et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature. 2019;575:468–472.
  • Pirc R, Rožič B, Koruza J, et al. Negative electrocaloric effect in antiferroelectric PbZrO3. EPL (Europhysics Letters). 2014;107(1):17002.
  • Lu SG, Rožič B, Zhang QM, et al. Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect. Appl Phys Lett. 2010;97:162904.
  • Pieczyska EA, Gadaj SP, Nowacki WK, et al. Phase-transformation fronts evolution for stress- and strain-controlled tension tests in TiNi shape memory alloy. Exp Mech. 2006;46:531–542.
  • Tušek J, Engelbrecht K, Eriksen D, et al. A regenerative elastocaloric heat pump. Nat Energy. 2016;1:16134.
  • Schmidt M, Schuetze A, Seelecke S. Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes. Int J Refr. 2015;54:88–97.
  • Xie Z, Sebald G, Guyomar D. Comparison of elastocaloric effect of natural rubber with other caloric effects on different-scale cooling application cases. Appl Therm Eng. 2017;111:914–926.
  • Moya X, Defay E, Heine V, et al. Too cool to work. Nat Phys. 2015;11:202–205.
  • Plaznik U, Kitanovski A, Rožič B, et al. Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device. Appl Phys Lett. 2015;106:043903.
  • Mathur ND. Electrocaloric Materials. Correia T, Zhang Q, Edited by. Berlin, Heidelberg: Springer; 2014. p. 251253.
  • Plaznik U, Vrabelj M, Kutnjak Z, et al. Numerical modelling and experimental validation of a regenerative electrocaloric cooler. Int J Refrig. 2019;98:139–149.
  • Defay E, Faye R, Despesse G, et al. Enhanced electrocaloric efficiency via energy recovery. Nat Commun. 2018;9:1827.
  • Trček M, Lavrič M, Cordoyiannis G, et al. Electrocaloric and elastocaloric effects in soft materials. J Phil Trans R Soc A. 2016;374:20150301.
  • Klemenčič E, Trček M, Kutnjak Z, et al. Giant electrocaloric response in smectic liquid crystals with direct smectic-isotropic transition. Sci Rep. 2019;9:1721.
  • Wim HDJ. Liquid Crystal elastomers: materials and applications. Berlin, Heidelberg: Springer; 2012. p. 1–240.
  • Küpfer I, Finkelmann H. Nematic liquid single crystal elastomers. Makromol Chem Rapid Commun. 1991;12:717–726.
  • Warner M, Terentjev EM. Liquid crystal elastomers. New York: Oxford University Press; 2007.
  • Rešetič A, Milavec J, Zupančič B, et al. Polymer-dispersed liquid crystal elastomers. Nature Communications. 2016;7(1):13140.
  • Cordoyiannis G, Lebar A, Zalar B, et al. Criticality controlled by cross-linking density in liquid single-crystal elastomers. Phys Rev Lett. 2007;99:197801.
  • Cordoyiannis G, Lebar A, Rožič B, et al. Controlling the critical behavior of paranematic to nematic transition in main-chain liquid single-crystal elastomers. Macromolecules. 2009;42:2069–2073.
  • Rožič B, Krause S, Finkelmann H, et al. Controlling the thermomechanical response of liquid-crystalline elastomers by influencing their critical behavior. Appl Phys Lett. 2010;96:111901.
  • Skačej G. Elastocaloric effect in liquid crystal elastomers from molecular simulations. Liq Cryst. 2018;45:1964–1969.
  • Berardi R, Zannoni C, Lintuvuori JS, et al. A soft-core GayBerne model for the simulation of liquid crystals by Hamiltonian replica exchange. J Chem Phys. 2009;131:174107.
  • Gay JG, Berne BJ. Modification of the overlap potential to mimic a linear sitesite potential. J Chem Phys. 1981;74:3316–3319.
  • Skačej G, Zannoni C. Molecular simulations shed light on supersoft elasticity in polydomain liquid crystal elastomers. Macromolecules. 2014;47:8824–8832.
  • Bird RB, Armstrong RC, Hassager D. Dynamics of polymeric liquids. New York: Wiley; 1977.
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. San Diego: Academic Press; 2002.
  • Kutnjak Z, Petzelt J, Blinc R. The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature. 2006;441:956–959.
  • Rožič B, Kosec M, Uršič H, et al. Influence of the critical point on the electrocaloric response of relaxor ferroelectrics. J Appl Phys. 2011;110:064118.
  • Ford MJ, Ambulo CP, Kent TA, et al. A multifunctional shape-morphing elastomer with liquid metal inclusions. PNAS. 2019;116:21438–21444.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.