Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 7
251
Views
6
CrossRef citations to date
0
Altmetric
Articles

A practical CFD modeling approach to estimate outlet boundary conditions of industrial multistage spray dryers: Inert particle flow field investigation

, , , &
Pages 824-838 | Received 15 Oct 2017, Accepted 10 Apr 2018, Published online: 11 Sep 2018
 

Abstract

Industrial multistage spray drying systems often have limited in situ process measurements to provide sufficient information for computational fluid dynamics (CFD) simulations of the primary drying chamber. In this case study on the spray dryer at Davis Dairy Plant (South Dakota State University), uncertainties were encountered in specifying the outlet boundary conditions of the spray drying chamber with two outlets: the side outlet and the bottom outlet leading to the second stage external vibrating bed. Using the available data on the vacuum pressure of the chamber, a numerical framework was introduced to approximate suitable outlet boundary conditions for the drying chamber. The procedure involved analyzing the ratio of the airflow rate between the two outlets and using a pseudo-tracer inert particle injection analysis. The goal of this approach was to determine a suitable range of outlet vacuum pressure that will lead to realistic particle movement behaviors during the actual plant operation. The protocol developed here will be a useful tool for CFD modeling of large scale multistage spray drying systems.

Abbreviations: ARC: Australian Research Council; CFD: Computational Fluid Dynamics; FFT: Fast Fourier Transform; MCC: Micellar Casein Concentrate; PRESTO: Pressure Staggering Option; SDSU: South Dakota State University; SIMPLE: Semi − Impilicit Method for Pressure Linked Equations; WPC: Whey Protein Concentrate

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This project is funded by Australian Research Council (ARC) and the Dairy Management Inc. through the ARC Linkage program (LP140100922).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.